Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656161PMC
http://dx.doi.org/10.1073/pnas.0900244106DOI Listing

Publication Analysis

Top Keywords

ovarian tumor
12
tumor progression
12
stromal cells
12
tumor
8
progression recruitment
8
multipotent mesenchymal
8
mesenchymal stromal
8
ll-37
6
mscs
6
pro-inflammatory peptide
4

Similar Publications

A pan-tumor review of the role of poly(adenosine diphosphate ribose) polymerase inhibitors.

CA Cancer J Clin

January 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.

Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.

View Article and Find Full Text PDF

Ewing sarcoma family tumors (ESFT) pose diagnostic challenges, which largely depend on the primary site of involvement and tumor stage. Despite advancements in treatment, metastatic ESFTs remain associated with poor outcomes. This case describes a 21-year-old woman who, in July 2022, presented with a left breast mass identified through ultrasound and CT scan, along with abdominal distention.

View Article and Find Full Text PDF

Background: Ovarian tumors are the most prevalent neoplasms worldwide, affecting women of all ages. According to Globocan's 2022 projections, by 2050, the number of women diagnosed with ovarian cancer worldwide will increase by over 55% to 503,448. The number of women dying from ovarian cancer is projected to increase to 350,956 each year, an increase of almost 70% from 2022.

View Article and Find Full Text PDF

Gengnianchun Against HO-Induced Oxidative Damage in KGN Cells via miR-548m/FOXO3 Signaling.

J Cell Biochem

January 2025

Department of Integrated Traditional Chinese Medicine and Western Medicine, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.

Gengnianchun (GNC) is a traditional remedy used for diminished ovarian reserve, but its underlying mechanisms remain unclear. This study aimed to explore these mechanisms in human granulosa-like cancer (KGN) cells pretreated with medicated rat serum (MRS) before HO exposure. MRS pretreatment significantly alleviated HO-induced cell damage, including improvements in cell viability, superoxide dismutase and GSH-Px activities, and Bcl-2 expression.

View Article and Find Full Text PDF

Tyrosine phosphatase SHP2 accelerated ovarian cancer via modulating integrin/ E-Cadherin/ ZEB1 induced EMT.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, No.12, Health Road, Shijiazhuang City, 050011, Hebei Province, China.

This article focusing on examining the function and further, molecular function of SHP2 in ovarian cancer (OC). For the molecular mechanism, bioinformatics was applied to study the specifically expressed genes in ovarian cancer ; the western blotting was applied to identify the EGF, p-SHP2, ZEB1, and E-Cadherin expressions in ovarian cancer tissue and pair adjacent tissue; then SKOV3 cells were treated with EGF and infected with E-Cadherin overexpression lentivirus, and then cells were treated with benzyl butyl phthalate and IRS-1 respectively. Detection of expression of p-SHP2, ZEB1, E-Cadherin, α3-integrin, p-Src, p-SMAD2, Snail, Slug and SKOV3 cells of migration and invasion abilities were detected using Western blot method and cell scratch assay and Transwell assay; Progression of ovarian cancer was detected using subcutaneous tumor transplantation assay in nude mice and HE staining method and immunocyto.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!