A whole-body counter (WBC) is a device employed in nuclear power plants (NPPs) to identify radionuclides and measure the content of radioactivity in humans. In this study, several experiments were conducted to suggest an optimal and practical method to improve the accuracy of in vivo measurements using WBCs at NPPs. First, countings from the front and back using a phantom were carried out to set up a discrimination programme between internal and external radioactive contamination in NPPs. Second, experiments were performed to select the optimal geometry of the WBC and to locate the contaminated area of radionuclides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncp014 | DOI Listing |
Sci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.
The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.
View Article and Find Full Text PDFTalanta
December 2024
China Nuclear Power Engineering Co., Ltd., Beijing, 100840, PR China.
The real-time detection of gaseous HO and its typical isotopic molecules, e.g., HO, DO, HDO, and HTO, is highly desirable in many fundamental scientific studies and practical monitoring, such as mechanistic studies of HO-involved chemical reactions and radiation risk warning of abnormal HTO emissions.
View Article and Find Full Text PDFSci Rep
December 2024
Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Glycerol, a by-product of biodiesel production, could be converted into various value-added products. This work focuses on its dehydrogenation to dihydroxyacetone (DHA), which is mainly used in the cosmetics industry. While several methods have been employed for DHA production, some necessitate catalysts and involve harsh reaction conditions as well as long reaction times.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA.
Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Ukraine.
Microgrids (MGs) have gained significant attention over the past two decades due to their advantages in service reliability, easy integration of renewable energy sources, high efficiency, and enhanced power quality. In India, low-voltage side customers face significant challenges in terms of power supply continuity and voltage regulation. This paper presents a novel approach for optimal power scheduling in a microgrid, aiming to provide uninterrupted power supply with improved voltage regulation (VR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!