Sixteen multiparous cows (12 Holstein and 4 Brown Swiss, 132 +/- 20 d in milk) were used in a replicated 4 x 4 Latin square design with 4-wk periods to determine the effects of feeding corn germ on dairy cow performance. Diets were formulated with increasing concentrations of corn germ (Dakota Germ, Poet Nutrition, Sioux Falls, SD) at 0, 7, 14, and 21% of the diet dry matter (DM). All diets had a 55:45 forage to concentrate ratio, where forage was 55% corn silage and 45% alfalfa hay. Dietary fat increased from 4.8% in the control diet to 8.2% at the greatest inclusion level of corn germ. The addition of corn germ resulted in a quadratic response in DM intake with numerically greater intake at 14% of diet DM. Feeding corn germ at 7 and 14% of diet DM increased milk yield and energy-corrected milk as well as fat percentage and yield. Milk protein yield tended to decrease as the concentration of corn germ increased in the diet. Dietary treatments had no effect on feed efficiency, which averaged 1.40 kg of energy-corrected milk/kg of DMI. Increasing the dietary concentration of corn germ resulted in a linear increase in milk fat concentrations of monounsaturated and polyunsaturated fatty acids at the expense of saturated fatty acids. Milk fat concentration and yield of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid were increased with increased dietary concentrations of corn germ. Although milk fat concentrations of both total trans-18:1 and cis-18:1 fatty acids increased linearly, a marked numeric increase in the concentration of trans-10 C18:1 was observed in milk from cows fed the 21% corn germ diet. A similar response was observed in plasma concentration of trans-10 C18:1. Feeding increasing concentrations of corn germ had no effect on plasma concentrations of glucose, triglyceride, or beta-hydroxybutyrate; however, the concentration of nonesterified fatty acids increased linearly, with plasma cholesterol concentration demonstrating a similar trend. Germ removed from corn grain before ethanol production provides an alternative source of fat for energy in lactating dairy cows when fed at 7 and 14% of diet DM. Our results suggest that fat from corn germ may be relatively protected with no adverse effect on DM intake, milk production, and milk composition when fed up to 14% of diet DM.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2008-1207DOI Listing

Publication Analysis

Top Keywords

corn germ
48
14% diet
16
fatty acids
16
germ
14
corn
13
concentrations corn
12
milk fat
12
milk
10
ethanol production
8
production alternative
8

Similar Publications

Functional Characterization of , a Gene Coding an Aspartic Acid Protease in .

J Fungi (Basel)

December 2024

Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China.

Aspartic proteases (APs), hydrolases with aspartic acid residues as catalytic active sites, are closely associated with processes such as plant growth and development and fungal and bacterial pathogenesis. is the dominant pathogenic fungus that causes Fusarium head blight (FHB) in wheat. However, the relationship of APs to the growth, development, and pathogenesis of .

View Article and Find Full Text PDF

In the present study, the effects of corn germ meal (CGM) and bile acids (BA) inclusion in Japanese quail diet on the productive and reproductive performance, egg quality, and serum biochemical parameters were evaluated. Six wk old, 480 Japanese quail birds were randomly divided into 6 groups (60 hens and 20 males / group) with 4 replicates / group. CGM was incorporated at 0, 10 and 20 % of diet for groups (G1, G2, and G3), while G4, G5 and G6 had the same levels of CGM with BA addition (500 g/ton feed).

View Article and Find Full Text PDF

Identifying substrate triggers for appressorium development in Setosphaeria turcica and functional characterization of Zn(II)2Cys6 transcription factors StTF1 and StTF2.

Int J Biol Macromol

November 2024

State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China. Electronic address:

Northern corn leaf blight is a devastating disease caused by Setosphaeria turcica (S. turcica), leading to significant yield losses in maize. S.

View Article and Find Full Text PDF

Estimation Model for Maize Multi-Components Based on Hyperspectral Data.

Sensors (Basel)

September 2024

College of Electronic and Information Engineering, Beihua University, Jilin 132021, China.

Assessing the quality of corn seeds necessitates evaluating their water, fat, protein, and starch content. This study integrates hyperspectral imaging technology with chemometric analysis techniques to achieve non-invasive and rapid detection of multiple key components in corn seeds. Hyperspectral images of the embryo surface of maize seeds were collected within the wavelength range of 1100~2498 nm.

View Article and Find Full Text PDF

Metconazole inhibits fungal growth and toxin production in major Fusarium species that cause rice panicle blight.

Pestic Biochem Physiol

September 2024

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; Collage of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

Rice panicle blight (RPB) caused by various Fusarium spp. is an emerging disease in the major rice-growing regions of China. Epidemics of this disease cause significant yield loss and reduce grain quality by contaminating panicles with different Fusarium toxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!