Mood disorders are elicited through a combination of genetic and environmental stress factors, and treatment with selective serotonin reuptake inhibitors ameliorates depressive symptoms. Changes in the serotonin transporter (SERT) binding may therefore occur in depressive patients and in subjects at risk for developing depression. The aim of this study was to explore whether abnormalities in SERT might be present in healthy individuals with familial predisposition to mood disorder. Nine individuals at high familial risk (mean age 32.2+/-4.2 years) and 11 individuals at low risk (mean age 32.4+/-5.0 years) for developing mood disorder were included. The subjects were healthy twins with or without a co-twin history of mood disorder identified by linking information from the Danish Twin Register and the Danish Psychiatric Central Register. Regional in vivo brain serotonin transporter binding was measured with [(11)C]DASB PET. The volumes of interest included the orbitofrontal cortex, the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain. We found that individuals at high familial risk for mood disorders had a 35% reduction in SERT binding in dorsolateral prefrontal cortex (p=0.014, Bonferroni corrected) and on a trend basis a 15% reduction in anterior cingulate (p=0.018, un-corrected). The depression and symptom scores of the high and the low risk individuals were not significantly different. In conclusion, our data suggest that a low SERT binding in dorsolateral prefrontal cortex represents a trait marker for mood disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2009.02.008 | DOI Listing |
Elife
January 2025
Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
Cognitive flexibility requires both the encoding of task-relevant and the ignoring of task-irrelevant stimuli. While the neural coding of task-relevant stimuli is increasingly well understood, the mechanisms for ignoring task-irrelevant stimuli remain poorly understood. Here, we study how task performance and biological constraints jointly determine the coding of relevant and irrelevant stimuli in neural circuits.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706.
Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition.
View Article and Find Full Text PDFEur J Pain
February 2025
Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil.
Background And Objective: Non-invasive neuromodulation techniques (NIN), such as transcranial Direct Current Stimulation (tDCS) and repetitive Transcranial Magnetic Stimulation (rTMS), have been extensively researched for their potential to alleviate pain by reversing neuroplastic changes associated with neuropathic pain (NP), a prevalent and complex condition. However, treating NP remains challenging due to the numerous variables involved, such as different techniques, dosages and aetiologies. It is necessary to provide insights for clinicians and public healthcare managers to support clinical decision-making.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
Introduction: Stress-evoked dysfunctions of the frontal cortex (FC) are correlated with changes in the functioning of the glutamatergic system, and evidence demonstrates that noradrenergic transmission is an important regulator of this process. In the current study, we adopted a restraint stress (RS) model in male Wistar rats to investigate whether the blockade of β1 adrenergic receptors (β1AR) with betaxolol (BET) in stressed animals influences the body's stress response and the expression of selected signaling proteins in the medial prefrontal cortex (mPFC).
Methods: The study was divided into two parts.
PeerJ
January 2025
Faculty of Graduate Studies, Daffodil International University, Dhaka, Dhaka, Bangladesh.
Background: Functional magnetic resonance imaging (fMRI) has revolutionized our understanding of brain activity by non-invasively detecting changes in blood oxygen levels. This review explores how fMRI is used to study mind-reading processes in adults.
Methodology: A systematic search was conducted across Web of Science, PubMed, and Google Scholar.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!