Expression and purification of amyloid-beta peptides from Escherichia coli.

Protein Expr Purif

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.

Published: July 2009

Soluble oligomers and fibrillar deposits of amyloid beta (Abeta) are key agents of Alzheimer's disease pathogenesis. However, the mechanism of amyloid aggregation and its interaction with live cells still remain unclear requiring the preparation of large amounts of pure and different Abeta peptides. Here we describe an Escherichia coli expression system using a fusion protein to obtain either Abeta(1-40) or Abeta(1-42) by essentially the same procedure. The fusion protein uses a His-tagged intestinal fatty acid binding protein (IFABP) followed by a six-glycine linker and a Factor Xa cleavage site before the Abeta. The advantages of this system are that the fusion protein can be expressed in large amounts, that the fusion partner, IFABP, has been well characterized in terms of folding, that Abeta or mutated Abeta peptides can be obtained without any extra residues attached to the N-terminus and that the system can be used to incorporate fluorine-labeled amino acids. The incorporation of fluorine-labeled amino acids using auxotrophic strains is a useful NMR probe of side chain behavior. We obtain final yields of 4 and 3mg/L of culture for Abeta(1-40) and Abeta(1-42), respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674643PMC
http://dx.doi.org/10.1016/j.pep.2009.02.009DOI Listing

Publication Analysis

Top Keywords

fusion protein
12
escherichia coli
8
large amounts
8
abeta peptides
8
system fusion
8
abeta1-40 abeta1-42
8
fluorine-labeled amino
8
amino acids
8
abeta
5
expression purification
4

Similar Publications

Arabidopsis has served as a model plant for studying the genetic networks that guide gynoecium development. However, less is known about other species such as tomato, a model for fleshy fruit development and ripening. Here, we study in tomato the transcription factor SPATULA (SPT), a bHLH-family member that in Arabidopsis is known to be important for gynoecium development.

View Article and Find Full Text PDF

Synthetic lethality approaches in BRCA1/2-mutated cancers have focused on poly(ADP-ribose) polymerase (PARP) inhibitors, which are subject to high rates of innate or acquired resistance in patients. Here, we used CRISPR/Cas9-based screening to identify DNA Ligase I (LIG1) as a novel target for synthetic lethality in BRCA1-mutated cancers. Publicly available data supported LIG1 hyperdependence of BRCA1-mutant cells across a variety of breast and ovarian cancer cell lines.

View Article and Find Full Text PDF

The concentrations of individual proteins vary between cells, both developmentally and stochastically. The functional consequences of this variation remain largely unexplored due to limited experimental tools to manipulate the relationship of protein concentration to activity. Here, we introduce a genetically encoded tool based on a tunable amyloid that enables precise control of protein concentration thresholds in cells.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies.

View Article and Find Full Text PDF

Recent work has demonstrated that the soluble photoconvertable fluorescent protein mEOS can be a reporter for AAA+ (ATPases Associated with diverse cellular Activities) unfoldase activity. Given that many AAA+ proteins process membrane proteins, we sought to adapt mEOS for use with membrane protein substrates. However, direct genetic fusion of mEOS to a membrane protein completely abolished fluorescence, severely limiting the utility of mEOS for studying AAA+ proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!