Validamycin A improves the response of Medicago truncatula plants to salt stress by inducing trehalose accumulation in the root nodules.

J Plant Physiol

Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.

Published: July 2009

In this work, the role of trehalose as an osmoprotectant against salt stress conditions was examined in root nodules of Medicago truncatula. For this purpose, we used validamycin A, a potent trehalase inhibitor, in order to induce trehalose accumulation. Validamycin A induced an increase of trehalose concentration in root nodules of M. truncatula by inhibiting trehalase activity; no effect on trehalose concentration was observed in roots and leaves. Trehalose accumulation was accompanied by a decrease in sucrose and starch content, indicating interference with carbohydrate partitioning in the plants. Under salinity conditions, sucrose accumulation appears to be induced in M. truncatula to protect nodule functioning by the inhibition of sucrose catabolism by sucrose synthase and alkaline invertase activities. However, trehalose accumulation induced by val A in nodules improved the response to salinity by increasing plant dry weight (PDW), and no effects of validamycin A on nitrogenase activity and PDW were observed in nonsalinized plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2008.12.011DOI Listing

Publication Analysis

Top Keywords

trehalose accumulation
16
root nodules
12
medicago truncatula
8
salt stress
8
trehalose concentration
8
trehalose
7
accumulation
5
validamycin
4
validamycin improves
4
improves response
4

Similar Publications

During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the production of target compounds. Dynamic flux balance analysis (dFBA) offers insight into the dynamics of metabolic pathways.

View Article and Find Full Text PDF

Metabolomics and microbiome analysis elucidate the detoxification mechanisms of Hemarthria compressa, a low cadmium accumulating plant, in response to cadmium stress.

J Hazard Mater

January 2025

College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China. Electronic address:

Cadmium (Cd) is recognized as one of the most toxic heavy metal in the environment that causes pronounced phytotoxicity. This study investigated the physiological and biochemical responses and detoxification mechanisms of Hemarthria compressa under various concentrations of Cd stress (0, 30, 60, 90, and 270 mg·kg). Our research findings indicate that the growth and photosynthetic capacity of H.

View Article and Find Full Text PDF

The neuronal ceroid lipofuscinoses (NCLs) are incurable pediatric neurodegenerative diseases characterized by accumulation of lysosomal material and dysregulation of autophagy. Given the promising results of treatment with trehalose, an autophagy inducer, in cell and animal models of NCL, we conducted an open-label, non-placebo-controlled, non-randomized 12-month prospective study in NCL patients receiving oral trehalose (4 g/day). All were treated with a commercially available formulation for 6 months, followed by a 6-month washout.

View Article and Find Full Text PDF

Due to the intensification of human activities, the ecosystems are being polluted by heavy metals. The pollution of heavy metals in agricultural systems has become a serious issue of global concern. This study detected the bioaccumulation of cadmium (Cd) in broad beans and aphids through continuous exposure to varying concentrations of Cd pollution (0, 3.

View Article and Find Full Text PDF

Mechanisms of thermal, acid, desiccation and osmotic tolerance of spp.

Crit Rev Food Sci Nutr

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, China.

spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!