A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A computer graphical user interface for survival mixture modelling of recurrent infections. | LitMetric

A computer graphical user interface for survival mixture modelling of recurrent infections.

Comput Biol Med

Department of Epidemiology and Biostatistics, School of Public Health, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845, Australia.

Published: March 2009

Recurrent infections data are commonly encountered in medical research, where the recurrent events are characterised by an acute phase followed by a stable phase after the index episode. Two-component survival mixture models, in both proportional hazards and accelerated failure time settings, are presented as a flexible method of analysing such data. To account for the inherent dependency of the recurrent observations, random effects are incorporated within the conditional hazard function, in the manner of generalised linear mixed models. Assuming a Weibull or log-logistic baseline hazard in both mixture components of the survival mixture model, an EM algorithm is developed for the residual maximum quasi-likelihood estimation of fixed effect and variance component parameters. The methodology is implemented as a graphical user interface coded using Microsoft visual C++. Application to model recurrent urinary tract infections for elderly women is illustrated, where significant individual variations are evident at both acute and stable phases. The survival mixture methodology developed enable practitioners to identify pertinent risk factors affecting the recurrent times and to draw valid conclusions inferred from these correlated and heterogeneous survival data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2009.01.003DOI Listing

Publication Analysis

Top Keywords

survival mixture
16
graphical user
8
user interface
8
recurrent infections
8
recurrent
6
survival
5
mixture
5
computer graphical
4
interface survival
4
mixture modelling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!