RNA and DNA oligonucleotides radiolabeled with (32)P or (33)P often require gel electrophoresis to remove undesired side and/or degradation products. Common ways to visualize these molecules after electrophoresis are by ultraviolet (UV) shadowing, which necessarily reduces the specific activity of the oligonucleotide, and by autoradiography using film, which is cumbersome and increases the cost of generating the radiolabeled molecule. A more cost-effective method is to physically inject the gel with a "Dip-N-Dot" solution of dye and radionuclide after electrophoresis but prior to phosphorimaging. The gel can be overlaid on its computer-generated image, allowing the labeled molecules to be visualized quickly.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2009.02.010DOI Listing

Publication Analysis

Top Keywords

gel
4
gel purification
4
purification radiolabeled
4
radiolabeled nucleic
4
nucleic acids
4
acids phosphorimaging
4
phosphorimaging dip-n-dot
4
dip-n-dot rna
4
rna dna
4
dna oligonucleotides
4

Similar Publications

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Novel Gel Formulation and Deep Injection Techniques for Lifting Effects in Cosmetic Dermatology.

J Cosmet Dermatol

January 2025

CGH Compagnie Generale des Hopitaux, Rome, Italy.

Introduction: In recent years, the field of aesthetic dermatology has witnessed a surge in demand for minimally invasive procedures aimed at rejuvenating aging skin. This study aims to address this demand by evaluating the effectiveness of the injectable gel in rejuvenating aging skin, particularly by targeting collagen regeneration and lifting effect.

Materials And Methods: The study involved 43 participants who underwent three monthly injection sessions targeting retaining ligaments.

View Article and Find Full Text PDF

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

In this study, an approach has been proposed in response to the urgent need for a sensitive and stable method for glucose detection at low concentrations. Platinum octaethylporphyrin (PtOEP) was chosen as the probe and embedded into the matrix material to yield a glucose-sensing film, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!