Background: The reproducibility of patient setup for radiotherapy is based on various methods including external markers, X-rays with planar or computerized image acquisition, and, more recently, surface matching imaging. We analyzed the setup reproducibility of 16 patients affected by prostate cancer who underwent conformal radiotherapy with curative intent by using a surface image registration system.

Methods: We analyzed the setup reproducibility of 16 patients affected by prostate cancer candidates for conformal radiotherapy by using a surface image registration system. At the initial setup, EPID images were compared with DRRs and a reference 3D surface image was obtained by the AlignRT system (Vision RT, London, UK). Surface images were acquired prior to every subsequent setup procedure. EPID acquisition was repeated when errors > 5 mm were reported.

Results: The mean random and systematic errors were 1.2 +/- 2.3 mm and 0.3 +/- 3.0 mm along the X axis, 0.0 +/- 1.4 mm and 0.5 +/- 2.0 mm along the Y axis, and 2.0 +/- 1.8 mm and -0.7 +/- 2.4 mm along the Z axis respectively. The positioning error detected by AlignRT along the 3 axes X, Y, and Z exceeded the value of 5 mm in 14.1%, 2.0%, and 5.1% measurements and the value of 3 mm in 36.9%, 13.6% and 27.8% measurements, respectively. Correlation factors calculated by linear regression between the errors measured by AlignRT and EPID ranged from 0.77 to 0.92 with a mean of 0.85 and SD of 0.13. The setup measurements by surface imaging are highly reproducible and correlate with the setup errors detected by EPID.

Conclusion: Surface image registration system appears to be a simple, fast, non-invasive, and reproducible method to analyze the set-up alignment in 3DCRT of prostate cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649941PMC
http://dx.doi.org/10.1186/1748-717X-4-9DOI Listing

Publication Analysis

Top Keywords

surface image
20
image registration
16
prostate cancer
16
registration system
12
conformal radiotherapy
12
+/- axis
12
reproducibility patient
8
setup
8
patient setup
8
surface
8

Similar Publications

Direct observation of chiral edge current at zero magnetic field in a magnetic topological insulator.

Nat Commun

January 2025

State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.

The chiral edge current is the boundary manifestation of the Chern number of a quantum anomalous Hall (QAH) insulator. The van der Waals antiferromagnet MnBiTe is theorized to be a QAH in odd-layers but has shown Hall resistivity below the quantization value at zero magnetic field. Here, we perform scanning superconducting quantum interference device (sSQUID) microscopy on these seemingly failed QAH insulators to image their current distribution.

View Article and Find Full Text PDF

Herein, a novel amine-functionalized magnetic resorcinol-formaldehyde with a core-shell structure (FeO@RF/Pr-NH) is prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over FeO@RF composite. Characterization through FT-IR, EDX, PXRD, and TGA confirmed successful surface modification while preserving the crystalline structure of FeO. The VSM analysis demonstrated excellent superparamagnetic properties, and SEM and TEM images revealed spherical particles for the designed nanocatalyst.

View Article and Find Full Text PDF

Electrocatalytic gas-evolving reactions often result in bubble-covered surfaces, impeding the mass transfer to active sites. Such an issue will be worsened in practical high-current-density conditions and can cause sudden cell failure. Herein, we develop an on-chip microcell-based total-internal-reflection-fluorescence-microscopy to enable operando imaging of bubbles at sub-50 nm and dynamic probing of their nucleation during hydrogen evolution reaction.

View Article and Find Full Text PDF

Alginate-functionalized nanoceria as ion-responsive eye drop formulation to treat corneal abrasion.

Carbohydr Polym

March 2025

Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Electronic address:

In this study, we aimed to develop ion-responsive and biocompatible alginate-capped nanoceria (Ce-ALG) for β-1,3-glucan (i.e., wound healing agent) delivery and corneal abrasion (CA) treatment.

View Article and Find Full Text PDF

Konjac glucomannan foams integrated with bilayer phase change microcapsules for efficient heat storage and thermal insulation.

Carbohydr Polym

March 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:

The traditional foams can only block heat loss, and cannot effectively store and release heat energy on demand to extend the insulation time. In this work, the paraffin-rich monolayer microcapsules were prepared using negatively charged phosphorylated cellulose nanofibers (CNF) as the emulsifier of Pickering emulsion. The positive chitosan was assembled on the surface of the monolayer microcapsules through an electrostatic layer-by-layer self-assembly method to prepare the bilayer microcapsules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!