Background: Germline mutations in BRCA1 or BRCA2 genes have been demonstrated to increase the risk of developing breast cancer. Conversely, the impact of BRCA mutations on prognosis and survival of breast cancer patients is still debated. In this study, we investigated the role of such mutations on breast cancer-specific survival among patients from North Sardinia.
Methods: Among incident cases during the period 1997-2002, a total of 512 breast cancer patients gave their consent to undergo BRCA mutation screening by DHPLC analysis and automated DNA sequencing. The Hakulinen, Kaplan-Meier, and Cox regression methods were used for both relative survival assessment and statistical analysis.
Results: In our series, patients carrying a germline mutation in coding regions and splice boundaries of BRCA1 and BRCA2 genes were 48/512 (9%). Effect on overall survival was evaluated taking into consideration BRCA2 carriers, who represented the vast majority (44/48; 92%) of mutation-positive patients. A lower breast cancer-specific overall survival rate was observed in BRCA2 mutation carriers after the first two years from diagnosis. However, survival rates were similar in both groups after five years from diagnosis. No significant difference was found for age of onset, disease stage, and primary tumour histopathology between the two subsets.
Conclusion: In Sardinian breast cancer population, BRCA2 was the most affected gene and the effects of BRCA2 germline mutations on patients' survival were demonstrated to vary within the first two years from diagnosis. After a longer follow-up observation, breast cancer-specific rates of death were instead similar for BRCA2 mutation carriers and non-carriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653541 | PMC |
http://dx.doi.org/10.1186/1471-2407-9-62 | DOI Listing |
Med Anthropol
December 2024
Department of Social Anthropology, University of Barcelona, Barcelona, Spain.
This research asks what is being put to the test by breast and gynecological cancer predisposition testing in Spain beyond genes or cancer. By combining document analysis and fieldwork with national healthcare professionals and drawing on the anthropology and sociology of testing, I examine how the molecular relations of these tests extend to the political economy of the national healthcare system. I show how the capacity of these tests to produce a low-risk collective has paradoxical consequences for the political economy of the national healthcare system, unsettling professionals' concerns and spotlighting what is prioritized in personalized medicine strategies.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
Five series of new 1,3,4-thiadiazole hybrids were designed and synthesized as promising EGFR inhibitors. Three human cancer cell lines were employed for testing each hybrid's in vitro antiproliferative efficacy; colon HCT-116, liver HepG-2 and breast MCF-7 using MTT assay. Comparing compound 9a to the reference doxorubicin, 9a shown superior activity to that of Dox with respect to MCF-7 (IC 3.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden.
Berberine, an isoquinoline alkaloid derived from various medicinal plants, emerges as a potential therapeutic agent against diverse human diseases. It has particularly shown notable anticancer efficacy against breast, colorectal, lung, prostate, and liver cancer. Berberine results in inhibition of cancer cell proliferation, induction of apoptosis, and suppressing angiogenesis, positioning it as a versatile, multitargeted therapeutic tool against cancer.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET.
View Article and Find Full Text PDFFront Glob Womens Health
December 2024
WHO Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland.
[This corrects the article DOI: 10.3389/fgwh.2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!