Egg has ben documented as a rich source for the supply of biologically active peptides. This study characterizes the immunomodulatory effects of an egg white enzymatic hydrolysate (EWH) using a BALB/c mouse model of egg allergy. Mice were orally sensitized to egg white and subsequently gavaged with EWH. ELISA results indicated significant reductions of both serum histamine and specific IgE titers in EWH-fed mice, accompanied by a repression of both IL-4 and IFN-gamma production in spleen cell cultures. Similarly, real-time RT-PCR analyses highlighted decreased mRNA expression of IFN-gamma and IL-12 (Th1-biased), as well as lower ratios of IL-4 and IL-13 mRNA (Th2-biased). On the other hand, increased intestinal expressions of TGF-beta and FOXp3 mRNA were determined in EWH-fed mice, suggesting induction of local regulatory mechanisms. The presence of immunodominant epitopes was proposed to be responsible for the immunomodulatory effects observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf803372bDOI Listing

Publication Analysis

Top Keywords

immunomodulatory effects
12
egg white
12
effects egg
8
white enzymatic
8
immunodominant epitopes
8
balb/c mouse
8
mouse model
8
model egg
8
egg allergy
8
ewh-fed mice
8

Similar Publications

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.

View Article and Find Full Text PDF

Cocaine-Induced Microglial Impairment and Its Rehabilitation by PLX-PAD Cell Therapy.

Int J Mol Sci

December 2024

Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.

Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving.

View Article and Find Full Text PDF

In the development of inflammatory bowel disease (IBD), peritoneal macrophages contribute to the resident intestinal macrophage pool. Previous studies have demonstrated that oral administration of L-fucose exerts an immunomodulatory effect and repolarizes the peritoneal macrophages in vivo in mice. In this study, we analyzed the phenotype and metabolic profile of the peritoneal macrophages from mice, as well as the effect of L-fucose on the metabolic and morphological characteristics of these macrophages in vitro.

View Article and Find Full Text PDF

Chitosan is widely explored in the field of biomedicine due to its abundance and reported properties, including biocompatibility, biodegradability, non-toxicity, mucoadhesion, and anti-microbial activity. Although our understanding of the immune response to chitosan has evolved, confusion remains regarding whether chitosan is a pro- or anti-inflammatory biomaterial. Tackling this knowledge gap is essential for the translation of chitosan-based biomaterials to clinical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!