Thrombin fragment (TP508) decreases myocardial infarction and apoptosis after ischemia reperfusion injury.

Ann Thorac Surg

Department of General Surgery, Cardiothoracic Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.

Published: March 2009

Background: Myocardial ischemia-reperfusion injury may lead to cardiac dysfunction or death. This study investigates the potential efficacy of a novel thrombin fragment (TP508) on myocardial ischemia-reperfusion injury.

Methods: Fourteen male Yucatan pigs underwent 60 minutes of mid-left anterior descending coronary artery occlusion followed by 120 minutes of reperfusion. Pigs received either saline vehicle (control, n = 7) or thrombin fragment TP508 (n = 7) as a bolus (0.5 mg/kg) 50 minutes into the ischemic period, followed by continuous intravenous infusion (1.25 mg x kg(-1) x h(-1)) during reperfusion. Myocardial function was monitored throughout the experiments. Monastryl blue/triphenyl tetrazolium chloride staining was utilized to measure the area at risk and infarcted tissue. Apoptosis was assessed by Western blotting and dUTP nick-end labeling (TUNEL) staining. Coronary microvascular reactivity to endothelium-dependent factors (adenosine diphosphate, substance P, A23187) and endothelium-independent factor (sodium nitroprusside) was examined.

Results: Global and regional left ventricular function was not significantly different between groups. Endothelium-dependent coronary microvascular relaxation was greater in the TP508 group and associated with higher endothelial nitric oxide synthase phosphorylation. Both infarct size and TUNEL staining was significantly decreased in the TP508 group compared with the control group (p < 0.05). Expression of the cell survival proteins B-cell lymphoma 2 (2.2-fold, p < 0.05) and heat shock protein-73 (1.6-fold, p < 0.05) was higher in the TP508 group. Expression of the cell-death-signaling proteins poly adenosine diphosphate-ribose polymerase (1.6-fold, p < 0.05), cleaved poly adenosine diphosphate-ribose polymerase (6.4-fold, p < 0.05), and B-cell lymphoma 2/adenovirus E1B 19 kDa-interacting protein 3 (3.8-fold, p < 0.05) was significantly higher in the TP508 group in the ischemic territory.

Conclusions: This study demonstrates that TP508 decreases infarct size, improves endothelial microvascular function, and induces cell-survival signaling in the setting of ischemia-reperfusion injury. Thus, TP508 may be a useful agent to attenuate myocardial reperfusion injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2008.12.021DOI Listing

Publication Analysis

Top Keywords

tp508 group
16
thrombin fragment
12
fragment tp508
12
tp508
9
tp508 decreases
8
reperfusion injury
8
myocardial ischemia-reperfusion
8
ischemia-reperfusion injury
8
tunel staining
8
coronary microvascular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!