The purinoceptor subtypes P2X(3) and P2X(2/3) have been shown to play a pivotal role in models of various pain conditions. Identification of a potent and selective dual P2X(3)/P2X(2/3) diaminopyrimidine antagonist RO-4 prompted subsequent optimization of the template. This paper describes the SAR and optimization of the diaminopyrimidine ring and particularly the substitution of the 2-amino group. The discovery of the highly potent and drug-like dual P2X(3)/P2X(2/3) antagonist RO-51 is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2009.01.097 | DOI Listing |
Expert Opin Ther Pat
December 2019
School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy.
: Purinergic P2X3-P2X2/3 receptors are placed in nociceptive neurons' strategic location and show unique desensitization properties; hence, they represent an attractive target for many pain-related diseases. Therefore, a broad interest from academic and pharmaceutical scientists has focused on the search for P2X3 and P2X2/3 receptor ligands and has led to the discovery of numerous new selective antagonists. Some of them have been studied in clinical trials for the treatment of pathological conditions such as bladder disorders, gastrointestinal and chronic obstructive pulmonary diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!