Modelling of pyrolysis of large wood particles.

Bioresour Technol

Chemical Engineering Department, National Institute of Technology, Durgapur 713209 WB, India.

Published: June 2009

A fully transient mathematical model has been developed to describe the pyrolysis of large biomass particles. The kinetic model consists of both primary and secondary reactions. The heat transfer model includes conductive and internal convection within the particle and convective and radiative heat transfer between the external surface and the bulk. An implicit Finite Volume Method (FVM) with Tridiagonal Matrix Algorithm (TDMA) is employed to solve the energy conservation equation. Experimental investigations are carried out for wood fines and large wood cylinder and sphere in an electrically heated furnace under inert atmosphere. The model predictions for temperature and mass loss histories are in excellent agreement with experimental results. The effect of internal convection and particle shrinkage on pyrolysis behaviour is investigated and found to be significant. Finally, simulation studies are carried out to analyze the effect of bulk temperature and particle size on total pyrolysis time and the final yield of char.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2009.01.007DOI Listing

Publication Analysis

Top Keywords

pyrolysis large
8
large wood
8
heat transfer
8
internal convection
8
convection particle
8
modelling pyrolysis
4
wood particles
4
particles fully
4
fully transient
4
transient mathematical
4

Similar Publications

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

To confront the energy consumption, high performance membrane materials are urgently needed. Carbon molecular sieve (CMS) membranes exhibit superior capability in separating gas mixtures efficiently. However, it remains a grand challenge to precisely tune the pore size and distribution of CMS membranes to further improve their molecular sieving properties.

View Article and Find Full Text PDF

The valorization of shell-based agricultural waste biomass for biofuel production represents a promising approach within the circular bioeconomy. This study employs a bibliometric analysis to investigate research trends and identify key developments in the field from 1997 to 2023, using data from the Web of Science and VOSviewer for scientific mapping. A total of 1333 research articles were examined, revealing notable shifts in research focus: from pyrolysis and biomass energy (1997-2005) to gasification (2006-2014), and more recently, to enzymatic hydrolysis and lignocellulosic biomass gasification (2015-2023).

View Article and Find Full Text PDF

Thermal processes are emerging as promising solutions to recovering phosphorus and other nutrient elements from anaerobic digestates. The feasibility of nutrient element recovery depends largely on the fates of nutrient elements and heavy metals during thermal processing. This study assesses the partitioning of macronutrients (N, P, K, Na, Ca and Mg) and heavy metals (Zn, Cu, and Mn) between condensed and gaseous phases during thermal conversion of cattle slurry digestates in gas atmospheres of pyrolysis, combustion, and gasification processes.

View Article and Find Full Text PDF

This analysis revealed the alterations in the pore structure of large organic molecules in coal during the process of coal pyrolysis. Nine models of macromolecular structures in coals, representing distinct coal ranks, have been built. The research results show that along with the increasing coal rank, the average microporous volume of medium rank coal is 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!