Vegetable based market waste was evaluated as a fermentable substrate for hydrogen (H(2)) production with simultaneous stabilization by dark-fermentation process using selectively enriched acidogenic mixed consortia under acidophilic microenvironment. Experiments were performed at different substrate/organic loading conditions in concurrence with two types of feed compositions (with and without pulp). Study depicted the feasibility of H(2) production from vegetable waste stabilization process. H(2) production was found to be dependent on the concentration of the substrate and composition. Higher H(2) production and substrate degradation were observed in experiments performed without pulp (23.96 mmol/day (30.0 kg COD/m(3)); 13.96 mol/kg COD(R) (4.8 kg COD/m(3))) than with pulp (22.46 mmol/day (32.0 kg COD/m(3)); 12.24 mol/kg COD(R) (4.4 kg COD/m(3))). Generation of higher concentrations of acetic acid and butyric acid was observed in experiments performed without pulp. Data enveloping analysis (DEA) was employed to study the combined process efficiency of system by integrating H(2) production and substrate degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2008.12.059DOI Listing

Publication Analysis

Top Keywords

experiments performed
12
vegetable based
8
based market
8
market waste
8
simultaneous stabilization
8
production substrate
8
substrate degradation
8
observed experiments
8
performed pulp
8
mol/kg codr
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!