Since the discovery of triggering receptor expressed on myeloid cells (TREM)-1 in 2000, evidence documenting the profound ability of the TREM and TREM-like receptors to regulate inflammation has rapidly accumulated. Monocytes, macrophages, myeloid dendritic cells, plasmacytoid dendritic cells, neutrophils, microglia, osteoclasts, and platelets all express at least one member of the TREM family, underscoring the importance of these proteins in the regulation of innate resistance. Recent work on the TREM family includes: characterization of a new receptor expressed on plasmacytoid dendritic cells; definition of a key role for TREM in inflammatory bowel disease and multiple sclerosis; an expanded list of diseases associated with the release of soluble forms of TREM proteins; and identification of the first well characterized TREM ligand: B7-H3, a ligand for TREM-like Transcript (TLT)-2. Moreover, analysis of TREM signaling has now identified key regulatory components and defined pathways that may be responsible for the complex functional interactions between the TREM and toll-like receptors. In addition, there is expanding evidence of a role for TREM in the regulation of integrin function via Plexin-A1. Together these new findings define the TREM and TREM-like receptors as pluripotent modifiers of disease through the integration of inflammatory signals with those associated with leukocyte adhesion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723941 | PMC |
http://dx.doi.org/10.1016/j.coi.2009.01.009 | DOI Listing |
Atherosclerosis
November 2024
Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany; LIFE Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany. Electronic address:
Background And Aims: Understanding molecular processes of the early phase of atherosclerotic cardiovascular disease conditions is of utmost importance for early prediction and intervention measures.
Methods: We measured 92 cardiovascular-disease-related proteins (Olink, Cardiovascular III) in 2024 elderly participants of the population-based LIFE-Adult study. We analysed the impact of 27 covariables on these proteins including blood counts, cardiovascular risk factors and life-style-related parameters.
Cardiovascular disease (CVD) remains one of leading causes of death worldwide. Aberrant platelet function mediate fibrin(ogen) rich thrombi that lead to occlusive thrombi associated with mortality. The receptor, TREM-like transcript-1 (TLT-1), stored in the platelet a-granules and released upon platelet activation, binds fibrinogen and von Willebrand factor.
View Article and Find Full Text PDFLife Sci
July 2024
Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil. Electronic address:
The Triggering Receptor Expressed on Myeloid Cells (TREM) family of receptors plays a crucial role in the immune response across various species. Particularly, TREM-1 and TREM-2 have been extensively studied, both in terms of their applications and their expression sites and signaling pathways. However, the same is not observed for the other family members collectively known as TREM-like-transcripts (TREML).
View Article and Find Full Text PDFAm J Reprod Immunol
October 2023
Department of Biology, University of Puerto Rico-Rio Pieadras, San Juan, Puerto Rico, USA.
Problem: The occurrence of preterm birth is associated with multiple factors including bleeding, infection and inflammation. Platelets are mediators of hemostasis and can modulate inflammation through interactions with leukocytes. TREM like Transcript 1 (TLT-1) is a type 1 single Ig domain receptor on activated platelets.
View Article and Find Full Text PDFBackground: Genetic study of late-onset Alzheimer's disease (AD) reveals that a rare Arginine-to-Histamine mutation at amino acid residue 47 (R47H) in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) results in increased disease risk. TREM2 plays critical roles in regulating microglial response to amyloid plaques in AD, leading to their clustering and activation surrounding the plaques. We previously showed that increasing human gene dosage exerts neuroprotective effects against AD-related deficits in amyloid depositing mouse models of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!