Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering.

Phys Med Biol

Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA 95616, USA.

Published: March 2009

Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved-given that their diameter is on the order of microns-nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818980PMC
http://dx.doi.org/10.1088/0031-9155/54/6/R01DOI Listing

Publication Analysis

Top Keywords

microbubble
8
microbubble contrast
8
contrast agents
8
ultrasound contrast
4
contrast microbubbles
4
imaging
4
microbubbles imaging
4
imaging therapy
4
therapy physical
4
physical principles
4

Similar Publications

Intravesical instillation of chemotherapy has been performed to reduce the risk of intravesical recurrence of bladder cancer. However, its antitumor effect is not necessarily sufficient, which may be partially due to inadequate delivery of intravesically administered chemotherapeutic agents to bladder tumors. Ultrasound irradiation to target tissues in the presence of microbubbles is a technique to transiently enhance cell membrane permeability and achieve efficient drug delivery to the desired sites without damage to non-target areas; this technique has been used in chemotherapy, immunotherapy, gene therapy, and radiotherapy for the treatment of various cancers.

View Article and Find Full Text PDF

Renal pseudotumors, which mimic tumors on imaging, pose diagnostic challenges that can lead to unnecessary interventions. Sensing ultrasound localization microscopy (sULM) is an advanced imaging technique that uses ultrasound imaging and microbubbles as sensors to visualize kidney functional units. This study aims to investigate whether sULM could differentiate between renal pseudotumors and tumors based on the presence of glomeruli.

View Article and Find Full Text PDF

Nanobubbles are studied for their unique properties and possible applications in wound healing processes. This study investigates the effects of hydrogen (H₂), oxygen (O₂), and ozone (O₃) nanobubbles on fibroblast migration and proliferation using  scratch wound healing assays. Fibroblast cells were treated with Dulbecco's Modified Eagle Medium (DMEM) combined with nanobubble solutions, and cell density was measured at 24 and 48 hours.

View Article and Find Full Text PDF

Influence of cell shape on sonoporation efficiency in microbubble-facilitated delivery using micropatterned cell arrays.

Sci Rep

December 2024

State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.

Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically.

View Article and Find Full Text PDF

Background: Neovascularisation of carotid plaques contributes to their vulnerability. Current imaging methods such as contrast-enhanced ultrasound (CEUS) usually lack the required spatial resolution and quantification capability for precise neovessels identification. We aimed at quantifying plaque vascularisation with ultrasound localization microscopy (ULM) and compared the results to histological analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!