Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are important pathogenic mechanisms in atherosclerosis and restenosis after vascular injury. In this study, we investigated the effects of beta-lapachone (betaL) (3,4-Dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione), which is a potent antitumor agent that stimulates NAD(P)H:quinone oxidoreductase (NQO)1 activity, on neointimal formation in animals given vascular injury and on the proliferation of VSMCs cultured in vitro. betaL significantly reduced the neointimal formation induced by balloon injury. betaL also dose-dependently inhibited the FCS- or platelet-derived growth factor-induced proliferation of VSMCs by inhibiting G(1)/S phase transition. betaL increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase 1 in rat and human VSMCs. Chemical inhibitors of AMPK or dominant-negative AMPK blocked the betaL-induced suppression of cell proliferation and the G(1) cell cycle arrest, in vitro and in vivo. The activation of AMPK in VSMCs by betaL is mediated by LKB1 in the presence of NQO1. Taken together, these results show that betaL inhibits VSMCs proliferation via the NQO1 and LKB1-dependent activation of AMPK. These observations provide the molecular basis that pharmacological stimulation of NQO1 activity is a new therapy for the treatment of vascular restenosis and/or atherosclerosis which are caused by proliferation of VSMCs.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.108.189837DOI Listing

Publication Analysis

Top Keywords

proliferation vsmcs
12
nadphquinone oxidoreductase
8
vascular smooth
8
smooth muscle
8
cell proliferation
8
vascular injury
8
nqo1 activity
8
neointimal formation
8
activation ampk
8
proliferation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!