A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6666332 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5851-08.2009 | DOI Listing |
Alzheimers Res Ther
January 2025
Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Bd Henri Becquerel, BP 5229, Caen, 14074, France.
Background: Subclinical depressive symptoms increase the risk of developing Alzheimer's disease (AD). The neurobiological mechanisms underlying this link may involve stress system dysfunction, notably related to the hippocampus which is particularly sensitive to AD. We aimed to investigate the links between blood stress markers and changes in brain regions involved in the stress response in older adults with or without subclinical depressive symptoms.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain.
Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.
Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.
J Transl Med
January 2025
Center for Reproducible Science, University of Zurich, Zurich, Switzerland.
Background: Animal systematic reviews are critical to inform translational research. Despite their growing popularity, there is a notable lack of information on their quality, scope, and geographical distribution over time. Addressing this gap is important to maintain their effectiveness in fostering medical advancements.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
Background: Rimegepant, a novel oral calcitonin gene-related peptide receptor antagonist, has been recently approved for the acute migraine treatment. While its efficacy was confirmed in randomized clinical trials, no data is available regarding real-life effectiveness and tolerability. GAINER, a prospective, multicentric study, aimed to evaluate rimegepant effectiveness and tolerability in the real-world setting.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that primarily affects the motor neurons in the brain and spinal cord. While the exact cause of ALS is not fully understood, a combination of genetic and environmental factors is believed to contribute to its development. Growth arrest-specific 6 (Gas6), a vitamin K-dependent protein, has been recognized to enhance oligodendrocytes and neurons' survival and is associated with different kinds of (neuro)inflammatory conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!