Photoreactivation, one of the first DNA repair pathways to evolve, is the direct reversal of premutagenic lesions caused by ultraviolet (UV) irradiation, catalyzed by photolyases in a light-dependent, single-enzyme reaction. It has been experimentally shown that photoreactivation prevents UV mutagenesis in a broad range of species. In the absence of photoreactivation, UV-induced photolesions are repaired by the more complex and much less efficient nucleotide excision repair pathway. Despite their obvious beneficial effects, several lineages, including placental mammals, lost photolyase genes during evolution. In this study, we ask why photolyase genes have been lost in those lineages and discuss the significance of these losses in the context of the evolution of the genomic mutation rates. We first perform an extensive phylogenomic analysis of the photolyase/cryptochrome family, to assess what species lack each kind of photolyase gene. Then, we estimate the ratio of nonsynonymous to synonymous substitution rates in several groups of photolyase genes, as a proxy of the strength of purifying natural selection, and we ask whether less evolutionarily constrained photolyase genes are more likely lost. We also review functional data and compare the efficiency of different kinds of photolyases. We find that eukaryotic photolyases are, on average, less evolutionarily constrained than eubacterial ones and that the strength of natural selection is correlated with the affinity of photolyases for their substrates. We propose that the loss of photolyase genes in eukaryotic species may be due to weak natural selection and may result in a deleterious increase of their genomic mutation rates. In contrast, the loss of photolyase genes in prokaryotes may not cause an increase in the mutation rate and be neutral in most cases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668831 | PMC |
http://dx.doi.org/10.1093/molbev/msp029 | DOI Listing |
Environ Microbiol Rep
December 2024
Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.
Black fungi on rock surfaces endure a spectrum of abiotic stresses, including UV radiation. Their ability to tolerate extreme conditions is attributed to the convergent evolution of adaptive traits, primarily highly melanized cell walls. However, studies on fungal melanins have not provided univocal results on their photoprotective functions.
View Article and Find Full Text PDFPLoS Genet
November 2024
Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
Light sensing is a critical function in most organisms and is mediated by photoreceptor proteins and phototransduction. Although most nematodes lack eyes, some species exhibit phototaxis. In the nematode Caenorhabditis elegans, the unique photoreceptor protein Cel-LITE-1, its downstream G proteins, and cyclic GMP (cGMP)-dependent pathways are required for phototransduction.
View Article and Find Full Text PDFJ Fungi (Basel)
September 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
Light is a key environmental factor affecting conidiation in filamentous fungi. The cryptochrome/photolyase CryA, a blue-light receptor, is involved in fungal development. In the present study, a homologous CryA (AoCryA) was identified from the widely occurring nematode-trapping (NT) fungus , and its roles in the mycelial growth and development of were characterized using gene knockout, phenotypic comparison, staining technique, and metabolome analysis.
View Article and Find Full Text PDFMicroorganisms
June 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China.
A Gram-positive, rod-shaped, aerobic, motile, and spore-forming bacterium, designated SCL10, was isolated from exposure to Co-60 radiation. In this study, whole-genome sequencing was performed to identify the strain as and functional characterization, with a focus on stress resistance. The genome of the SCL10 strain was sequenced and assembled, revealing a size of 4,979,182 bp and 5167 coding genes.
View Article and Find Full Text PDFSci Rep
June 2024
School of Life Sciences, Sambalpur University, Sambalpur, 768019, India.
Acclimation to crop niches for thousands of years has made indigenous rice cultivars better suited for stress-prone environments. Still, their response to UV-B resiliency is unknown. 38 rice landraces were grown in cemented pots in a randomised block design with three replicates under open field conditions in Sambalpur University in the wet season of 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!