Threonine-deficient diets induced changes in hepatic bioenergetics.

Am J Physiol Gastrointest Liver Physiol

Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA.

Published: May 2009

Diets deficient in an indispensable amino acid are known to suppress food intake in rats. Few studies were focused at understanding how amino acid-deficient diets may elicit biochemical changes at the mitochondrial level. The goal of this study was to evaluate mitochondrial function in rats fed diets with 0.00, 0.18, 0.36, and 0.88% threonine (Thr) (set at 0, 30, 60, and 140% of Thr requirement for growth). Here, it is described for the first time that Thr-deficient diets induce a specific uncoupling of mitochondria in liver, especially with NADH-linked substrates, not observed in heart (except for Thr-devoid diet). The advantage of this situation would be to provide ATP to support growth and maintenance when high-quality protein food (or wealth of high-quality food in general) is available, whereas Thr-deficient diets (or deficient-quality protein food) promote the opposite, increasing mitochondrial uncoupling in liver. The uncoupling with NADH substrates would favor the use of nutrients as energy sources with higher FADH-to-NADH ratios, such as fat, minimizing the first irreversible NADH-dependent catabolism of many amino acids, including Thr, thus enhancing the use of the limiting amino acid for protein synthesis when a low quality protein source is available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696218PMC
http://dx.doi.org/10.1152/ajpgi.90545.2008DOI Listing

Publication Analysis

Top Keywords

amino acid
8
thr-deficient diets
8
protein food
8
diets
5
threonine-deficient diets
4
diets induced
4
induced changes
4
changes hepatic
4
hepatic bioenergetics
4
bioenergetics diets
4

Similar Publications

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

The enantioselective synthesis of 1,4-dicarbonyl compounds continues to pose a significant challenge in organic synthesis, and a catalytic process which generates two adjacent stereogenic centers with full stereochemical control is lacking until now. The 1,4-relationship of the functional groups requires an Umpolung strategy as one of the α-carbonyl positions has to be inverted into an electrophilic center to react with a normal enolate. We report herein the highly enantio- and diastereoselective addition of silyl ketene acetals toward electrophilic 1-azaallyl cations to furnish chiral 4-hydrazonoesters, which are masked 1,4-dicarbonyl compounds.

View Article and Find Full Text PDF

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities.

Mini Rev Med Chem

January 2025

Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.

Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.

View Article and Find Full Text PDF

Transforming Feather Meal Into a High-Performance Feed for Broilers.

Vet Med Sci

January 2025

Department of Industrial Management, Faculty of Humanities, University of Tehran, Kish International Campus, Tehran, Iran.

Background: The poultry industry faces challenges with the high cost and environmental impact of Soybean meal. Feather meal, a byproduct with low digestibility due to its keratin content, is a potential alternative. Recent biotechnological advances, including enzymatic and bacterial hydrolysis, have enhanced its digestibility and nutritional value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!