Ras/Raf-1/MAPK pathway mediates response to tamoxifen but not chemotherapy in breast cancer patients.

Clin Cancer Res

Endocrine Cancer Group, Division of Cancer Studies and Molecular Pathology, University Department of Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom.

Published: February 2009

Purpose: The expression and activation of the Ras/Raf-1/mitogen-activated protein kinase (MAPK) pathway plays an important role in the development and progression of cancer, and may influence response to treatments such as tamoxifen and chemotherapy. In this study we investigated whether the expression and activation of the key components of this pathway influenced clinical outcome, to test the hypothesis that activation of the MAPK pathway drives resistance to tamoxifen and chemotherapy in women with breast cancer.

Experimental Design: Breast tumors from patients at the Glasgow Royal Infirmary and others treated within the BR9601 trial were analyzed for expression of the three Ras isoforms, total Raf-1, active and inactive forms of Raf-1 [pRaf(ser338) and pRaf(ser259), respectively], MAPK, and phospho-MAPK using an immunohistochemical approach. Analyses were done with respect to disease free-survival and overall survival.

Results: Expression and activation of the Ras pathway was associated with loss of benefit from treatment with tamoxifen but not chemotherapy. Overexpression of pRaf(ser338) was associated with shortened disease-free and overall survival time in univariate analyses. Multivariate analysis suggested pRaf(ser338) was independent of known prognostic markers in predicting outcome following tamoxifen treatment (P=0.03).

Conclusion: This study suggests that activation of the Ras pathway predicts for poor outcome on tamoxifen but not chemotherapy, and identifies pRaf(ser338) as a potential marker of resistance to estrogen receptor-targeted therapy. In addition, it suggests that expression of pRaf(ser338) could identify patients for whom tamoxifen alone is insufficient adjuvant systemic therapy, but for whom the addition of chemotherapy may be of benefit.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-07-4967DOI Listing

Publication Analysis

Top Keywords

tamoxifen chemotherapy
20
expression activation
12
mapk pathway
8
activation ras
8
ras pathway
8
outcome tamoxifen
8
therapy addition
8
tamoxifen
7
chemotherapy
6
expression
5

Similar Publications

Efflux and uptake transport and gut microbial reactivation of raloxifene glucuronides.

Basic Clin Pharmacol Toxicol

January 2025

Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.

Raloxifene has low bioavailability due to extensive glucuronidation in the intestine and the liver, and its pharmacokinetics is associated with high intra- and interindividual variability. Some of this variability could be explained by the enterohepatic recycling of raloxifene, which is driven by transporter-mediated uptake and efflux and gut microbial deglucuronidation of raloxifene glucuronides. These individual processes involved in raloxifene disposition, however, have not been characterized in full detail.

View Article and Find Full Text PDF

Aptamer Proteolysis-Targeting Chimeras (PROTACs): A Novel Strategy to Combat Drug Resistance in Estrogen Receptor α-Positive Breast Cancer.

ACS Pharmacol Transl Sci

December 2024

State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Breast cancer with positive expression of estrogen receptor α (ERα+) accounts for 70% of breast cancer cases, whose predominant treatment is currently endocrine therapy. The main strategy of endocrine therapy for ERα+ breast cancer is to inhibit the ERα signaling pathway and downregulate ERα levels, which often results in mutations in the ligand-binding domain (LBD) of ERα, leading to significant resistance to subsequent treatment in patients. To combat drug resistance, we first proposed a novel aptamer PROTAC strategy through specifically targeted degradation of ERα via targeting the DNA-binding domain (DBD) of ERα.

View Article and Find Full Text PDF

Infertility due to ovarian toxicity is a common side effect of cancer treatment in premenopausal women. Tamoxifen (TAM) is a selective estrogen receptor modulator that prevented radiation- and chemotherapy-induced ovarian failure in preclinical studies. In the current study, we examined the potential regulatory role of long noncoding RNAs (lncRNAs) in the mechanism of action of TAM in the ovaries of tumor-bearing rats receiving cyclophosphamide (CPA) as cancer therapy.

View Article and Find Full Text PDF

: Estrogen receptor-α coactivator MED1 is overexpressed in 40-60% of human breast cancers, and its high expression correlates with poor disease-free survival of patients undergoing anti-estrogen therapy. However, the molecular mechanism underlying MED1 upregulation and activation in breast cancer treatment resistance remains elusive. : miRNA and mRNA expression analysis was performed using the NCBI GEO database.

View Article and Find Full Text PDF

Tamoxifen (TAM) is vital in breast cancer (BC) treatment, yet its resistance significantly impairs its efficacy. While miR-592 is known for its suppressive role in BC, its effect on chemotherapy resistance remains unclear. In this study, we observed a significant reduction in miR-592 levels in TAM-resistant BC tissues and cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!