The class of bimetallic clusters, Au(n)M(m) (M = Zn, Cd, Hg), is calculated at the ab initio level using the DFT, RI-MP2, and CCSD(T) methods. For the triatomic Au2M (M = Zn, Cd), the auride-type linear Au-M-Au structures are preferred; for Au2Hg, the linear Au-Au-Hg "amalgam" is preferred. The mixed cation [HgAuHg]+, an analog of the known solid-state species Hg32+, is predicted. For larger Au(n)Hg(m) clusters, the results are similar to the isoelectronic Au(n)M- anions. Several local minima and transition states are identified. All are found to be planar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp810423j | DOI Listing |
J Phys Chem A
November 2009
Department of Chemistry, University of Helsinki, POB 55, A. I. Virtasen aukio 1, 00014 Helsinki, Finland.
The class of bimetallic clusters, Au(n)M(m) (M = Zn, Cd, Hg), is calculated at the ab initio level using the DFT, RI-MP2, and CCSD(T) methods. For the triatomic Au2M (M = Zn, Cd), the auride-type linear Au-M-Au structures are preferred; for Au2Hg, the linear Au-Au-Hg "amalgam" is preferred. The mixed cation [HgAuHg]+, an analog of the known solid-state species Hg32+, is predicted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!