Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have prepared flexible, transparent, and very conducting thin composite films from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), filled with both arc discharge and HIPCO single-walled nanotubes, at high loading level. The films are of high optical uniformity. The arc discharge nanotube-filled composites were significantly more conductive, demonstrating DC conductivities of >10(5) S/m for mass fractions >50 wt %. The ratio of DC to optical conductivity was higher for composites with mass fractions of 55-60 wt % than for nanotube-only films. For an 80 nm thick composite, filled with 60 wt % arc discharge nanotubes, this conductivity ratio was maximized at sigma(DC)/sigma(Op) = 15. This translates into transmittance (550 nm) and sheet resistance of 75 and 80 Omega/square, respectively. These composites were electromechanically very stable, showing <1% resistance change over 130 bend cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn800858w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!