Computer simulations were performed based on a multiple chemical species convection-diffusion model with coupled biochemical reactions for oxygen (O2), nitric oxide (NO), superoxide (O2*-), peroxynitrite (ONOO-), nitrite (NO2-) and nitrate (NO3-) in cylindrical geometry with blood flow through a 30 microm diameter arteriole. Steady state concentration gradients of all chemical species were predicted for different O2*- production rates, superoxide dismutase (SOD) concentrations, and blood flow rates. Effects of additional O2*- production from dysfunctional endothelial nitric oxide synthase (eNOS) were also simulated. The model predicts that convection is essential for characterizing O2 partial pressure gradients (PO2) in the bloodstream and surrounding tissue, but has little direct effect on NO gradients in blood and tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-0-387-85998-9_2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!