Botulinum neurotoxins (BoNTs) and their fragments are targets of therapeutic developments and are increasingly used as therapeutic, prophylactic, and research reagents. However, published data on their properties vary widely. In order to gain a better understanding of these variations, we initiated a systematic investigation of the stability parameters of catalytic light chains (Lc) as well as of cell surface binding domains (Hc) of the neurotoxin. When followed by CD spectroscopy, we noticed that the recombinant light chains of serotypes A (LcA), B, D, E, and G rapidly lost their secondary structures by mild stirring. Denaturation of LcA increased with stirring speed and temperature resulting in a catalytically inactive precipitate. Reducing agents or an anaerobic environment were ineffective in the denaturation. Under identical conditions, bovine serum albumin, ovalbumin, carboxypeptidase B, and of thermolysin, a structural and functional analogue of LcA, remained unchanged. Hc domains of serotype A, B, C, E, and F were also denatured by mild stirring. Adding the nonionic detergent Tween-20 to LcA completely prevented the denaturation. We speculate that the BoNT domains undergo surface denaturation due to rapid exposure of hydrophobic residues by mechanical agitation. This study has important implications for handling BoNT proteins used in therapeutic development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.21676 | DOI Listing |
Bioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
Polymers (Basel)
January 2025
Mitsubishi Gas Chemical Company, Inc., Tokyo 100-8324, Japan.
Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and ,-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh, 2-octenylsuccinic acid (OSA), and itaconic acid (IA) bearing an exomethylene group for polymerization. OSA was a chain extender by intermolecular condensation and a stopper by intramolecular cyclization to inhibit cross-linkage.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary.
The processing of beans begins with a particularly time-consuming procedure, the hydration of the seeds. Ultrasonic treatment (US) represents a potential environmentally friendly method for process acceleration, while near-infrared spectroscopy (NIR) is a proposedly suitable non-invasive monitoring tool to assess compositional changes. Our aim was to examine the hydration process of red kidney beans of varying sizes and origins.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!