G protein-coupled receptors (GPCRs) represent a large family of seven transmembrane receptors, which communicate extracellular signals into the cellular lumen. The human genome contains 720-800 GPCRs, and their diverse signal characteristics are determined by their specific tissue and subcellular expression profiles, as well as their coupling profile to the various G protein families (G(s), G(i), G(q), G(12)). The G protein coupling pattern links GPCR activation to the specific downstream effector pathways. G(12/13) signalling of GPCRs has been studied only recently in more detail, and involves activation of RhoGTPase nucleotide exchange factors (RhoGEFs). Four mammalian RhoGEFs regulated by G(12/13) proteins are known: p115-RhoGEF, PSD-95/Disc-large/ZO-1 homology-RhoGEF, leukemia-associated RhoGEF and lymphoid blast crisis-RhoGEF. These link GPCRs to activation of the small monomeric GTPase RhoA, and other downstream effectors. Misregulated G(12/13) signalling is involved in multiple pathophysiological conditions such as cancer, cardiovascular diseases, arterial and pulmonary hypertension, and bronchial asthma. Specific targeting of G(12/13) signalling-related diseases of GPCRs hence provides novel therapeutic approaches. Assays to quantitatively measure GPCR-mediated activation of G(12/13) are only emerging, and are required to understand the G(12/13)-linked pharmacology. The review gives an overview of G(12/13) signalling of GPCRs with a focus on RhoGEF proteins as the immediate mediators of G(12/13) activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795247 | PMC |
http://dx.doi.org/10.1111/j.1476-5381.2009.00121.x | DOI Listing |
J Struct Biol
December 2024
Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address:
G protein-coupled receptor 39 (GPR39), a member of the growth hormone-releasing peptide family, exhibits widespread expression across various tissues and demonstrates high constitutive activity, primarily activated by zinc ions. It plays critical roles in cell proliferation, differentiation, survival, apoptosis, and ion transport through the recruitment of Gq/11, Gs, G12/13, and β-arrestin proteins. GPR39 is involved in anti-inflammatory and antioxidant responses, highlighting its diverse pathophysiological functions.
View Article and Find Full Text PDFInflamm Res
December 2024
Research Center, Shandong Medical College, Linyi, 276000, Shandong, China.
Background: G proteins are a class of important signal transducers in mammalians. G proteins can corpoarated with G proteincoupled receptors (GPCRs) and transmit signals from extracellular stimuli into intracellular response, which will regulate a series of biological functions. G-proteins are heterotrimeric proteins composed of Gα, Gβ, and Gγ subunits.
View Article and Find Full Text PDFRespir Res
August 2024
Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood.
View Article and Find Full Text PDFStructure
October 2024
School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea. Electronic address:
The endothelin receptor type B (ET) exhibits promiscuous coupling with various heterotrimeric G protein subtypes including Gs, Gi/o, Gq/11, and G12/13. Recent fluorescence and structural studies have raised questions regarding the coupling efficiencies and determinants of these G protein subtypes. Herein, by utilizing an integrative approach, combining hydrogen/deuterium exchange mass spectrometry and NanoLuc Binary Technology-based cellular systems, we investigated conformational changes of Gs, Gi, and Gq triggered by ET activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!