A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling. | LitMetric

Rho kinase signaling regulates inflammatory cell migration and chemokine production. We therefore investigated the mechanisms of Rho-kinase-dependent inflammation in lipopolysaccharide (LPS)-induced renal failure. C57/BL6 mice received intraperitoneal LPS with or without daily treatment with specific Rho kinase inhibitors (Y-27632 or HA-1077; 5 mg/kg). Rho kinase inhibitors were applied in a preventive (12 or 1 h before LPS) or a therapeutic (6 h after LPS) scheme. Both protected renal function and decreased tubular injury in LPS-treated mice. Enhanced Rho kinase activity was inhibited by HA-1077 in capillary endothelial cells, inflammatory cells, and tubuli by analysis of Rho kinase substrate phosphorylation. Early neutrophil influx was reduced by HA-1077 without reduction of the proinflammatory cytokine TNFalpha. In contrast, HA-1077 decreased the influx of monocytes/macrophages coinciding with reduced expression of the NF-kappaB-regulated chemokines CCL5 and CCL2. We therefore examined NF-kappaB signal transduction and found that NF-kappaB p65 phosphorylation and nuclear translocation were reduced by Rho kinase inhibition. IkappaBalpha degradation was not altered during the first 6 h but was reduced by HA-1077 at later time points. NF-kappaB p50-deficient mice were similarly protected from renal injury by Rho kinase inhibition further supporting the prominent role for p65 in Rho kinase inhibition. Together, these data suggest that Rho kinase inhibition by preventive or therapeutic treatment effectively reduced endotoxic kidney injury in part by attenuation of NF-kappaB p65 activation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.90746.2008DOI Listing

Publication Analysis

Top Keywords

rho kinase
40
kinase inhibition
20
nf-kappab p65
12
rho
10
kinase
9
lps-induced renal
8
renal failure
8
attenuation nf-kappab
8
kinase inhibitors
8
protected renal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!