Download full-text PDF |
Source |
---|
Anal Chim Acta
January 2025
College of Chemistry and Materials Science, Hebei University, Baoding, 071002, Hebei, China. Electronic address:
The necessity for the development of effective adsorbents to capture endocrine disrupting chemicals (EDCs) from environmental and food samples arises from the potential health hazards that the EDCs may impose on human beings. Hence, a novel sulfonic group based hyper cross-linked polymer (HQSA-PLE-HCP) was synthesized and explored in solid phase extraction for the enrichment of some EDCs. The HQSA-PLE-HCP demonstrated an excellent adsorption capability for some EDCs (bisphenol F, bisphenol A, bishydroxyphenylbutane and p-tert-butylphenol).
View Article and Find Full Text PDFFood Chem
February 2025
College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China. Electronic address:
A pyridine-based ionic porous organic polymer bearing hydroxyl groups (OH-iPOP) was developed for the first time by quaternization and crosslinking of 4-pyridinemethanol with 4,4'-bis(chloromethyl)biphenyl. OH-iPOP exhibited strong adsorption capacity for endocrine disruptors (EDs) including bisphenol A, bisphenol F, p-tert-butylphenol and bisphenol B (82.59-183.
View Article and Find Full Text PDFFood Chem
December 2024
College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China. Electronic address:
Endocrine-disrupting chemicals (EDCs) can disrupt the normal functioning of the endocrine system in organisms, leading to various health issues. Therefore, monitoring EDCs in the environment and food is of significant importance. In this study, a hydroxyl-functionalized ionic porous organic polymer (OH-IPOP) has been synthesized for the first time using 2-benzimidazolemethanol as a monomer.
View Article and Find Full Text PDFChemosphere
August 2024
School of Emergency Management, School of Environment and Safety Engineering, Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jingjiang College, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China. Electronic address:
Environ Toxicol Pharmacol
April 2024
Ingeniería Electroquímica y Corrosión (IEC), Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, C/Camino de Vera, Valencia 46022, Spain. Electronic address:
Endocrine disruptors chemicals (EDCs) pose significant health risks, including cancer, behavioral disorders, and infertility. In this study, we employed the photoelectrocatalysis (PEC) technique with optimized tungsten oxide (WO) nanostructures as a photoanode to degrade three diverse EDCs: methiocarb, dimethyl phthalate, and 4-tert-butylphenol. PEC degradation tests were carried out for individual contaminants and a mixture of them, assessing efficiency across different EDC families.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!