In patients with cancer, DC express significantly lower amounts of MHC class II compared with those of normal individuals. However, the underlying mechanisms for this have not yet been fully defined. In the present study, we found that IL-10 plays a major role in the tumor-conditioned medium (TCM)-mediated decrease of MHC class II expression on BM-derived DC. IL-10 inhibited the expression of type I CIITA during DC differentiation. GM-CSF-mediated histone (H3 and H4) acetylation at the type I promoter (pI) locus of the CIITA gene was markedly increased during DC differentiation and this increase was blocked by IL-10. We also found that STAT5 bound to the CIITA pI locus during DC differentiation, and the binding was markedly attenuated by TCM or IL-10. Altogether, these findings suggest that (i) the down-regulation of MHC class II in tumor microenvironments is most likely attributable to IL-10 in the TCM and (ii) IL-10-mediated MHC class II down-regulation results from the inhibition of type I CIITA expression. This inhibition is most likely due to blocking of the STAT5-associated epigenetic modifications of the CIITA pI locus during the entire period of DC differentiation from BM cells, as opposed to a simple inhibition of MHC class II expression at the DC stage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200838674DOI Listing

Publication Analysis

Top Keywords

mhc class
24
down-regulation mhc
8
type promoter
8
class expression
8
type ciita
8
ciita locus
8
mhc
6
class
6
ciita
6
il-10
5

Similar Publications

Antigen processing and presentation via major histocompatibility complex (MHC) molecules are central to immune surveillance. Yet, quantifying the dynamic activity of MHC class I and II antigen presentation remains a critical challenge, particularly in diseases like cancer, infection and autoimmunity where these pathways are often disrupted. Current methods fall short in providing precise, sample-specific insights into antigen presentation, limiting our understanding of immune evasion and therapeutic responses.

View Article and Find Full Text PDF

MAIT Cell-Mediated Immune Mechanisms of Dialysis-Induced Peritoneal Fibrosis and Therapeutic Targeting.

J Am Soc Nephrol

January 2025

Nephrology Division, Department of Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.

Background: Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis (PD) and abdominal surgeries, yet effective treatments remain elusive. Given the known roles of mucosal-associated invariant T (MAIT) cells in immune responses and fibrotic diseases, we investigated their involvement in PD-induced peritoneal fibrosis to identify potential therapeutic targets.

Methods: We employed single-cell RNA sequencing (scRNA-seq) and flow cytometry to characterize the activation and function of peritoneal MAIT cells in patients undergoing long-term PD.

View Article and Find Full Text PDF

Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways.

Glia

January 2025

Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.

Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.

View Article and Find Full Text PDF

Background: Fibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix components. The immune cells are postulated to exert a pivotal role in the development of fibrotic skin disease. Single-cell RNA sequencing has been used to explore the composition and functionality of immune cells present in fibrotic skin diseases.

View Article and Find Full Text PDF

Background: IgE-mediated food allergy is accompanied by mucosal mast cell (MMC) hyperplasia in the intestinal mucosa. Intestinal MMC numbers correlate with the severity of food allergy symptoms. However, the mechanisms by which MMCs proliferate excessively are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!