Electron ionisation mass spectral studies of bridgehead-fused Delta2-norbornanethiazolines.

Rapid Commun Mass Spectrom

Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Ciudad Universitaria s/n, E-28040 Madrid, Spain.

Published: March 2009

The electron ionisation (EI) mass spectra of a series of bridgehead-fused Delta2-norbornanethiazolines, a new class of bridgehead-norbornane derivatives, have been studied and their cleavage mechanisms rationalised on the basis of the substituent shifts as well as on the identification of relevant peaks through accurate mass measurements and collision-induced dissociation tandem mass spectrometric experiments. The fragmentation patterns of isomeric pairs of 6,6- and 10,10-dimethylnorbornanethiazolines are almost identical, probably due to an initial isomerisation of molecular ion previous to the fragmentation. In general, the dominant peaks in the spectra of all the studied compounds originate from initial alpha-cleavages of C(5)-C(6) or C(1)-C(10) bonds, followed by concomitant homolytic cleavage of C(1)-C(9) and C(7)-C(10) bonds. The driving force for this fragmentation pathway, directed by the gem-dimethyl group, is the formation of a highly stabilised thiazolilmethyl cation which constitutes the base peak in all the spectra and allows the identification of these interesting ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.3950DOI Listing

Publication Analysis

Top Keywords

electron ionisation
8
ionisation mass
8
bridgehead-fused delta2-norbornanethiazolines
8
mass
4
mass spectral
4
spectral studies
4
studies bridgehead-fused
4
delta2-norbornanethiazolines electron
4
mass spectra
4
spectra series
4

Similar Publications

Microwave Dielectric Properties and Defect Behavior of xTiO-(1-x)SiO Glass.

Materials (Basel)

January 2025

China Building Materials Academy, Beijing 100024, China.

xTiO-(1-x)SiO (x = 2.9~8.2 mol%) glass specimens were synthesized using the flame hydrolysis technique.

View Article and Find Full Text PDF

Preparation of halloysite nanotube-based monolithic column for small molecules and protein analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071001, China; Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei 071001, China. Electronic address:

s: This study aimed to prepare a new separation medium, silane coupling agent KH570- modified halloysite nanotube (MPS-HNT) monolithic column, with excellent separation performance for small molecular compounds and macromolecular proteins. This was prepared using the principle of redox polymerization with modified HNTs as monomers. The optimal monomer proportion was obtained by optimizing the ratio of monomer, cross-linker, and pore-forming agent, which was evaluated using scanning electron microscopy, nitrogen adsorption, and mercury intrusion.

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

The intramolecular migration of three hydrogen atoms from one moiety of a gaseous radical cation to the other prior to fragmentation is an extremely rare type of redox reaction. Within the scope of this investigation, this scenario requires an ionized but electron-rich arene acceptor bearing a para-(3-hydroxyalkyl) residue. The precise mechanism of such unidirectional 3H transfer processes, including the order of the individual H transfer steps, has remained unclear in spite of previous isotope labelling and recent infrared ion spectroscopy (IRIS) studies.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is widely used across various industries owing to its versatility and favorable properties, including application in beverage bottles, food containers, textile fibers, engineering resins, films, and sheets. However, polymer materials are susceptible to degradation from factors such as light, oxygen, and heat. Therefore, it is crucial to understand the structural changes that occur during degradation and the extent of these changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!