The purpose of the present study was to investigate the effect of chronic intermittent hypobaric hypoxia (CIHH) on α(1)-adrenergic receptors and the role of alpha(1)-adrenergic receptors in the protection of CIHH against ischemic injury of myocardium. Sixty-six adult male Sprague-Dawley rats were randomly divided into four groups: control group (Con), 14-day CIHH treatment group (CIHH14), 28-day CIHH treatment group (CIHH28) and 42-day CIHH treatment group (CIHH42). CIHH rats were exposed to hypoxia mimicking 5 000 m altitude (p(B)=404 mmHg, p(O(2))=84 mmHg) in a hypobaric chamber, 6 h daily for 14, 28 and 42 d, respectively. Control animals lived in the same environment as CIHH animals except hypoxia exposure. After anesthesia with sodium pentobarbital (3.0-3.5 mL/kg body weight, i.p.), papillary muscle was taken from the right ventricle of rat and perfused with modified Tyrode's solution continuously, at constant temperature (37 °C) and perfusion speed (12 mL/min). Muscle contraction was evoked by electric stimuli. Different concentrations (1x10(-7), 1x10(-6) and 1x10(-5) mol/L) of phenylephrine (PE), an alpha(1)-adrenergic receptor agonist, were applied cumulatively to investigate the effect of PE on the mechanic contraction of right ventricular papillary muscles of rats in Con, CIHH14, CIHH28 and CIHH42 groups. Also, prazosin (1x10(-6) mol/L), an α(1)-adrenergic receptor antagonist, was used to investigate the role of α(1)-adrenergic receptor in the protective effect of CIHH on papillary muscle. The results showed: (1) PE increased the maximal isometric tension (P(max)) and maximal velocity of tension development (P(dT/dt)) of muscle contraction in a dose-dependent manner (P<0.05), and the increase of the muscle contraction was much greater in CIHH28 and CIHH42 rats than that in Con rats (P<0.05). Under 1x10(-5) mol/L of PE, the increases of P(max) and P(dT/dt) over the baseline were 51.2% and 44.5% in CIHH28 group, 48.6% and 44.5% in CIHH42 group, and 28.7% and 24.5% in Con group, respectively; (2) The contraction of papillary muscle decreased during simulated ischemia, but the decrease was slighter in CIHH rats than that in Con rats (P<0.05). The decreases in P(max) and P(dT/dt) were 59.6% and 53.6% in CIHH28 group, 60.4% and 49.9% in CIHH42 group, and 74.4% and 64.7% in Con group, respectively; (3) The protective effect of CIHH on ischemic papillary muscle was abolished by prazosin (1x10(-6) mol/L). The results of the present study suggest that CIHH increases the activity of α(1)-adrenergic receptor, which is possibly one of the mechanisms for the cardioprotection of CIHH.
Download full-text PDF |
Source |
---|
Int J Surg
January 2025
Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.
Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.
Plant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFAnticancer Drugs
January 2025
Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center.
In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.
View Article and Find Full Text PDFJAMA Intern Med
January 2025
Virta Health, Denver, Colorado.
Clin Cancer Res
January 2025
Mater Research Institute - University of Queensland, Woolloongabba, Qld, Australia.
Purpose: Receptor CUB-domain containing- protein 1 (CDCP1) was evaluated as a target for detection and treatment of breast cancer.
Experimental Design: CDCP1 expression was assessed immunohistochemically in tumors from 423 patients (119 triple-negative breast cancer (TNBC); 75 HER2+; 229 ER+/HER2- including 228 primary tumors, 229 lymph node and 47 distant metastases). Cell cytotoxicity induced in vitro by a CDCP1-targeting antibody-drug conjugate (ADC), consisting of the human/mouse chimeric antibody ch10D7 and the microtubule disruptor monomethyl auristatin E (MMAE), was quantified, including in combination with HER2-targeting ADC T-DM1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!