From the Gla domain to a novel small-molecule detector of apoptosis.

Cell Res

Aposense Ltd, 5-7 Ha'Odem St, Kiryat Matalon, PO Box 7119, Petach Tikva, Israel.

Published: May 2009

Apoptosis plays a pivotal role in the etiology or pathogenesis of numerous medical disorders, and thus, targeting of apoptotic cells may substantially advance patient care. In our quest for novel low-molecular-weight probes for apoptosis, we focused on the uncommon amino acid gamma-carboxyglutamic acid (Gla), which plays a vital role in the binding of clotting factors to negatively charged phospholipid surfaces. Based on the alkyl-malonic acid motif of Gla, we have developed and now present ML-10 (2-(5-fluoro-pentyl)-2-methyl-malonic acid, MW=206 Da), the prototypical member of a novel family of small-molecule detectors of apoptosis. ML-10 was found to perform selective uptake and accumulation in apoptotic cells, while being excluded from either viable or necrotic cells. ML-10 uptake correlates with the apoptotic hallmarks of caspase activation, Annexin-V binding and disruption of mitochondrial membrane potential. The malonate moiety was found to be crucial for ML-10 function in apoptosis detection. ML-10 responds to a unique complex of features of the cell in early apoptosis, comprising irreversible loss of membrane potential, permanent acidification of cell membrane and cytoplasm, and preservation of membrane integrity. ML-10 is therefore the most compact apoptosis probe known to date. Due to its fluorine atom, ML-10 is amenable to radio-labeling with the (18)F isotope, towards its potential future use for clinical positron emission tomography imaging of apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/cr.2009.17DOI Listing

Publication Analysis

Top Keywords

apoptosis
8
apoptotic cells
8
membrane potential
8
ml-10
7
gla domain
4
domain novel
4
novel small-molecule
4
small-molecule detector
4
detector apoptosis
4
apoptosis apoptosis
4

Similar Publications

Temporal dynamics of PM induced cell death: Emphasizing inflammation as key mediator in the late stages of prolonged myocardial toxicity.

Exp Cell Res

January 2025

Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio-45267, United States of America; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur-613401, Tamil Nadu, India. Electronic address:

Multiple forms of cell death contribute significantly to cardiovascular pathologies, negatively impacting cardiac remodeling and leading to heart failure. While myocardial cell death has been associated with PM induced cardiotoxicity, the temporal dynamics of various cell death forms, such as apoptosis, ferroptosis, necroptosis, and pyroptosis, in relation to inflammatory processes, remain underexplored. This study examines the time-dependent onset and progression of these cell death pathways in the myocardium and their correlation with inflammation in a Wistar rat model.

View Article and Find Full Text PDF

Designing an anticancer Pd(II) complex as poly(ADP-ribose) polymerase 1 inhibitor.

Int J Biol Macromol

January 2025

School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:

Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.

View Article and Find Full Text PDF

Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.

View Article and Find Full Text PDF

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!