A convenient synthesis of Type A procyanidins.

Molecules

Department of Chemistry, Iowa State University, Ames, IA 50011, USA.

Published: February 2009

Type A procyanidins can be synthesized in good yields from the condensation of benzopyrilium salts 8 and either catechin or phloroglucinol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6253771PMC
http://dx.doi.org/10.3390/molecules14020807DOI Listing

Publication Analysis

Top Keywords

type procyanidins
8
convenient synthesis
4
synthesis type
4
procyanidins type
4
procyanidins synthesized
4
synthesized good
4
good yields
4
yields condensation
4
condensation benzopyrilium
4
benzopyrilium salts
4

Similar Publications

A Design of Experiments Approach to the Radical-Induced Oxidation of Dimeric C4-C8 Linked B-Type Procyanidins.

Molecules

December 2024

Department of Molecular Food Chemistry and Development, Institute of Food and One Health, Leibniz University Hannover, 30167 Hannover, Germany.

This study systematically investigated the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical induced oxidation of all dimeric C4-C8 linked B-type procyanidins (PCs) B1-B4 to maximise the formation of the oxidation products using a Design of Experiments (DoE) approach. The C4-C8 linked B1 and B2 formed the A1 () and A2 () (/ 575 [M-H]) with an ether bridge between C2u-O-C7t as expected. Interestingly, the oxidation of the C4-C8 linked dimers B3 and B4 yielded for each two main oxidation products with / 575 [M-H].

View Article and Find Full Text PDF

Antimicrobial Effectiveness of L. Leaf Extracts Prepared in Natural Deep Eutectic Solvents (NaDESs).

Antibiotics (Basel)

November 2024

Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babeș, Street, 400012 Cluj-Napoca, Romania.

Background: Blackcurrant ( L.) leaves are valuable sources of bioactive compounds, including phenolic acids, flavonoids, and tannins, which contribute to their potent antioxidant, anti-inflammatory, and antimicrobial properties.

Objectives: The overall aim of this study was to investigate the antimicrobial potential of extracts rich in bioactive compounds from blackcurrant leaves prepared in natural deep eutectic solvents (NaDESs).

View Article and Find Full Text PDF

Revisiting dietary proanthocyanidins on blood glucose homeostasis from a multi-scale structural perspective.

Curr Res Food Sci

November 2024

College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China.

Multi-dimensional studies have consistently indicated the benefits of dietary proanthocyanidins on blood glucose homeostasis through consumption of them from fruits, cereals and nuts. Proanthocyanidins from various sources possess different structures, but even the minor variations in structures influence their regulation on blood glucose, including the degree of polymerization, galloacylation at C3, number of hydroxyl groups in B ring and linkage type. Therefore, this Review details the role of three types of proanthocyanidins (procyanidins, prodelphinidins and propelargonidins) in blood glucose control and their underlying mechanisms, and various structural features contribute to.

View Article and Find Full Text PDF

Acer truncatum is a multifunctional tree species with broad applications in ornamental, healthy drink, and seed oil. In the present study, proanthocyanidins were isolated from the seed coats of A. truncatum, which were largely discarded as industrial wastes in seed oil production.

View Article and Find Full Text PDF

Polyphenol oxidase gene editing changed the flavonoid composition and browning process of litchi (Litchi chinensis Sonn.) callus.

Gene

February 2025

Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; National Key Laboratory for Tropical Crop Breeding, Haikou, Hainan 571101, China. Electronic address:

Postharvest pericarp browning, caused primarily by the enzymatic oxidation of phenols, reduces the shelf life and market value of litchi fruit and is considered a major limitation for the development of the litchi industry. Previous studies have shown that polyphenol oxidase (PPO) is a key enzyme and that flavonoids are important substrates for enzymatic browning; however, direct evidence is still lacking. This study investigated the differences in the browning process among the wild type (WT) and four PPO gene-edited litchi calli to verify the function of PPO in the browning of litchi tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!