Purpose: Comparison of the antiangiogenic/vascular properties of the oral mammalian target of rapamycin (mTOR) inhibitor RAD001 (everolimus) and the vascular endothelial growth factor receptor (VEGFR) inhibitor vatalanib (PTK/ZK).
Experimental Design: Antiproliferative activity against various tumor histotypes and downstream effects on the mTOR pathway were measured in vitro. In vivo, antitumor activity, plasma, and tumor RAD001 levels were measured. Activity in several different angiogenic/vascular assays in vitro and in vivo was assessed and compared with PTK/ZK.
Results: RAD001 inhibited proliferation in vitro (IC50 values<1 nmol/L to >1 micromol/L), and in sensitive and insensitive tumor cells, pS6 kinase and 4E-BP1 were inhibited. Activity in vitro did not correlate with activity in vivo and significant responses were seen in tumors with IC50 values>10-fold higher than tumor RAD001 concentrations. In vitro, RAD001 inhibited the proliferation of VEGF-stimulated and fibroblast growth factor-stimulated human endothelial cells but not dermal fibroblasts and impaired VEGF release from both sensitive and insensitive tumor cells but did not inhibit migration of human endothelial cells. In vivo, in tumor models derived from either sensitive or insensitive cells, RAD001 reduced Tie-2 levels, the amount of mature and immature vessels, total plasma, and tumor VEGF. RAD001 did not affect blood vessel leakiness in normal vasculature acutely exposed to VEGF nor did it affect tumor vascular permeability (Ktrans) as measured by dynamic contrast-enhanced magnetic resonance imaging. However, the pan-VEGFR inhibitor PTK/ZK inhibited endothelial cell migration and vascular permeability but had less effect on mature vessels compared with RAD001.
Conclusions: VEGFR and mTOR inhibitors show similar but also distinct effects on tumor vascular biology, which has implications for their clinical activity alone or in combination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-08-2057 | DOI Listing |
J Urban Health
January 2025
Department of Geography, Florida State University, Bellamy Building, Room 323, 113 Collegiate Loop, PO Box 3062190, Tallahassee, FL, 32306-2190, USA.
Understanding when and where heat adversely influences health outcomes is critical for targeting interventions and adaptations. However, few studies have analyzed the role of indoor heat exposures on acute health outcomes. To address this research gap, the study partnered with the New York City Fire Department Emergency Medical Services.
View Article and Find Full Text PDFGut
January 2025
Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
Background: Non-absorbed dietary emulsifiers, including carboxymethylcellulose (CMC), directly disturb intestinal microbiota, thereby promoting chronic intestinal inflammation in mice. A randomised controlled-feeding study (Functional Research on Emulsifiers in Humans, FRESH) found that CMC also detrimentally impacts intestinal microbiota in some, but not all, healthy individuals.
Objectives: This study aimed to establish an approach for predicting an individual's sensitivity to dietary emulsifiers via their baseline microbiota.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, P. R.China.
The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Information Engineering, Electronics and Telecommunications (DIET), "La Sapienza" University of Rome, 00184 Rome, Italy.
This research proposes an all-metal metamaterial-based absorber with a novel geometry capable of refractive index sensing in the terahertz (THz) range. The structure consists of four concentric diamond-shaped gold resonators on the top of a gold metal plate; the resonators increase in height by 2 µm moving from the outer to the inner resonators, making the design distinctive. This novel configuration has played a very significant role in achieving multiple ultra-narrow resonant absorption peaks that produce very high sensitivity when employed as a refractive index sensor.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Medical Biology, Faculty of Nursing and Midwifery, Wroclaw Medical University, 50-368 Wroclaw, Poland.
The growing resistance of bacteria to antibiotics is a serious problem in health care. The present study aims to assess the drug resistance of , , and isolated from infections in a multispecialty hospital over a 6-year period. Identification and antimicrobial susceptibility testing were performed using the VITEK2 automated system (Biomerieux).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!