Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3'UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In this work, we report the characterization of the Drosophila melanogaster SBP2 (dSBP2). Despite its shorter length, it retained the same selenoprotein synthesis-promoting capabilities as the mammalian counterpart. However, a major difference resides in the SECIS recognition pattern: while human SBP2 (hSBP2) binds the distinct form 1 and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only. In addition, we report the identification of a K (lysine)-rich domain in all SBP2s, essential for SECIS and 60S ribosomal subunit binding, differing from the well-characterized L7Ae RNA-binding domain. Swapping only five amino acids between dSBP2 and hSBP2 in the K-rich domain conferred reversed SECIS-binding properties to the proteins, thus unveiling an important sequence for form 1 binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673426 | PMC |
http://dx.doi.org/10.1093/nar/gkp078 | DOI Listing |
J Reprod Dev
December 2024
Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan.
Selenoprotein P (SeP) is synthesized in the liver and plays a vital role in maintaining selenium homeostasis via transport throughout the body. Previous studies have shown that SeP-deficient mice have severely reduced expression of selenoproteins essential for testicular function, leading to male infertility. We previously reported that the high expression of Ccdc152 in hepatocytes acts as a lncRNA, suppressing SeP expression in the liver.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
College of Life Science, Capital Normal University, Beijing 100048, China.
Selenium (Se) is an essential trace element for humans. Low concentrations of Se can promote plant growth and development. Enhancing grain yield and crop Se content is significant, as major food crops generally have low Se content.
View Article and Find Full Text PDFJ Trace Elem Med Biol
May 2024
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China. Electronic address:
Background: Biogenic selenium nanoparticles (SeNPs) show numerous advantages including their high stability, low toxicity, and high bioactivity. While metabolism of SeNPs remains not well studied and need more investigation to reveal the process.
Purpose: The objective of the study was to investigate the relationship between nitrate reductase and selenite reduction in Rahnella aquatilis HX2, characterize the properties of HX2 produced SeNPs, and explore their potential applications, particularly their anticancer activity.
iScience
December 2023
Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan.
Oligodendrocytes (OLs) are the myelin-forming cells in the CNS that support neurons through the insulating sheath of axons. This unique feature and developmental processes are achieved by extrinsic and intrinsic gene expression programs, where RNA-binding proteins can contribute to dynamic and fine-tuned post-transcriptional regulation. Here, we identified SECIS-binding protein 2-like (Sbp2l), which is specifically expressed in OLs by integrated transcriptomics.
View Article and Find Full Text PDFJ Am Chem Soc
May 2023
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States.
Radical -adenosyl-l-methionine (SAM) enzymes leverage the properties of one or more iron- and sulfide-containing metallocenters to catalyze complex and radical-mediated transformations. By far the most populous superfamily of radical SAM enzymes are those that, in addition to a 4Fe-4S cluster that binds and activates the SAM cofactor, also bind one or more additional auxiliary clusters (ACs) of largely unknown catalytic significance. In this report we examine the role of ACs in two RS enzymes, PapB and Tte1186, that catalyze formation of thioether cross-links in ribosomally synthesized and post-translationally modified peptides (RiPPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!