Objectives: The P-glycoprotein (P-gp) efflux pump is known to be present within several major physiological barriers including the brain, kidney, intestine and placenta. However, the function of P-gp in the airways of the lung is unclear. The purpose of this study was to use the highly specific P-gp inhibitor GF120918A to investigate the activity of the P-gp transporter in the airways to determine whether P-gp could influence inhaled drug disposition.

Methods: P-gp activity was measured as a change in digoxin transport in the presence of GF120918A in normal human bronchial epithelial (NHBE) cells, Calu-3 cell layers and the ex-vivo rat lung.

Key Findings: The efflux ratios (ERs) in NHBE and Calu-3 cells were between 0.5 and 2, in contrast to 10.7 in the Caco-2 cell control. These low levels of GF120918A-sensitive polarised digoxin transport were measured in the absorptive direction in NHBE cells (ER = 0.5) and in the secretory direction in Calu-3 cells (ER = 2), but only after 21 days in culture for both cell systems and only in Calu-3 cells at passage > 50. The airspace to perfusate transfer kinetics of digoxin in the ex-vivo rat lung were unchanged in the presence of GF120918A.

Conclusions: These results demonstrated that although low levels of highly culture-dependent P-gp activity could be measured in cell-lines, these should not be interpreted to mean that P-gp is a major determinant of drug disposition in the airways of the lung.

Download full-text PDF

Source
http://dx.doi.org/10.1211/jpp/61.03.0003DOI Listing

Publication Analysis

Top Keywords

calu-3 cells
12
p-gp
8
airways lung
8
p-gp activity
8
activity measured
8
digoxin transport
8
nhbe cells
8
ex-vivo rat
8
low levels
8
cells
5

Similar Publications

Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).

View Article and Find Full Text PDF

Human nasal epithelium (HNE) organoid models of SARS-CoV-2 infection were adopted globally during the COVID-19 pandemic once it was recognized that the Vero cell line commonly used by virologists did not recapitulate human infection. However, the widespread use of HNE organoid infection models was hindered by the high cost of media and consumables, and the inherent limitation of basal cells as a scalable continuous source of cells. The human Calu-3 cell line, generated from a lung adenocarcinoma, was shown to largely recapitulate infection of the human epithelium and to preserve the SARS-CoV-2 genomic fidelity.

View Article and Find Full Text PDF

The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.

View Article and Find Full Text PDF

Semisynthesis of Alkaloid Derivatives: Pyranoacridone-Hydroxamic Acid Cytotoxic Conjugates with HDAC and Topoisomerase II α Dual Inhibitory Activity.

J Nat Prod

January 2025

Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.

Inspired by our previous efforts in the semisynthetic modification of naturally occurring pyranoacridones, we report the targeted design and semisynthesis of dual inhibitors of HDAC and topoisomerase II α (Topo II α) derived from des--methylacronycine () and noracronycine () pyranoacridone alkaloids. Designed from the clinically approved SAHA, the cytotoxic pyranoacridone nuclei from the alkaloids served as the capping group, while a hydroxamic acid moiety functioned as the zinc-binding group. Out of 16 compounds evaluated in an cytotoxicity assay, KT32 () with noracronycine () as the capping group and five-carbon linker hydroxamic acid side chains showed good cytotoxic activity with IC values of 1.

View Article and Find Full Text PDF

Formulation and characterization of inhalable dasatinib-nanoemulsion as a treatment potential against A549 and Calu-3 lung cancer cells.

Int J Health Sci (Qassim)

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia.

Objective: Dasatinib (DTB) is a second-generation tyrosine kinase inhibitor that was found it could help with lung cancer treatment. However, DTB has low aqueous solubility and poor bioavailability due to its incomplete absorption and high first-pass effect. The objective of this study was to improve DTB's solubility, delivery, and efficacy as a potential lung cancer treatment by developing an inhalable DTB-nanoemulsion (DNE) formulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!