Background: Tumor necrosis factor (TNF) is associated with the development of inflammatory pathologies. Antibodies and soluble TNF (solTNF) receptors that neutralize excessive TNF are effective therapies for inflammatory and autoimmune diseases. However, clinical use of TNF inhibitors is associated with an increased risk of infections.

Methods: A novel dominant-negative (DN) strategy of selective TNF neutralization, consisting of blocking solTNF while sparing transmembrane TNF (tmTNF), was tested in mouse models of mycobacterial infection and acute liver inflammation. XENP1595, a DN-TNF biologic, was compared with etanercept, a TNF receptor 2 (TNFR2)-IgG1 Fc fusion protein that inhibits murine solTNF and tmTNF.

Results: XENP1595 protected mice from acute liver inflammation induced by endotoxin challenge in Mycobacterium bovis bacillus Calmette-Guérin (BCG)-infected mice, but, in contrast to etanercept, it did not compromise host immunity to acute M. bovis BCG and Mycobacterium tuberculosis infections in terms of bacterial burden, granuloma formation, and innate immune responses.

Conclusions: A selective inhibitor of solTNF efficiently protected mice from acute liver inflammation yet maintained immunity to mycobacterial infections. In contrast, nonselective inhibition of solTNF and tmTNF suppressed immunity to M. bovis BCG and M. tuberculosis. Therefore, selective inhibition of solTNF by DN-TNF biologics may represent a new therapeutic strategy for the treatment of inflammatory diseases without compromising host immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1086/597204DOI Listing

Publication Analysis

Top Keywords

host immunity
12
acute liver
12
liver inflammation
12
tumor necrosis
8
necrosis factor
8
mycobacterium bovis
8
bovis bacillus
8
compromising host
8
bcg mycobacterium
8
mycobacterium tuberculosis
8

Similar Publications

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

Spontaneous base flipping helps drive Nsp15's preferences in double stranded RNA substrates.

Nat Commun

January 2025

Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.

Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15.

View Article and Find Full Text PDF

Cordycepin affects Streptococcus mutans biofilm and interferes with its metabolism.

BMC Oral Health

January 2025

Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.

Background: Streptococcus mutans (S. mutans) contributes to caries. The biofilm formed by S.

View Article and Find Full Text PDF

Granulocyte macrophage colony stimulating factor in virus-host interactions and its implication for immunotherapy.

Cytokine Growth Factor Rev

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada. Electronic address:

Viruses have evolved to strategically exploit cellular signaling pathways to evade host immune defenses. GM-CSF signaling plays a pivotal role in regulating inflammation, activating myeloid cells, and enhancing the immune response to infections. Due to its central role in the immune system, viruses may target this pathway to further establish infection.

View Article and Find Full Text PDF

Proteomic analysis of the nonstructural protein 2-host protein interactome reveals a novel regulatory role of SH3 domain-containing kinase-binding protein 1 in porcine reproductive and respiratory syndrome virus replication and apoptosis.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China. Electronic address:

Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!