A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amphibian larvae and zinc sulphate: a suitable model to study the role of brain-derived neurotrophic factor (BDNF) in the neuronal turnover of the olfactory epithelium. | LitMetric

Amphibian larvae and zinc sulphate: a suitable model to study the role of brain-derived neurotrophic factor (BDNF) in the neuronal turnover of the olfactory epithelium.

Cell Tissue Res

Laboratorio de Biología del Desarrollo, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBYNE-CONICET, Buenos Aires, República Argentina.

Published: April 2009

The vertebrate olfactory system has fascinated neurobiologists over the last six decades because of its ability to replace its neurons and synaptic connections continuously throughout adult life, under both physiological and pathological conditions. Among the factors that are proposed to be involved in this regenerative potential, brain-derived neurotrophic factor (BDNF) is a candidate for having an important role in the neuronal turnover in the olfactory epithelium (OE) because of its well-documented neurogenic and trophic effects throughout the nervous system. The aim of the present study was to generate a suitable model to study the participation of BDNF in the recovery of the OE after injury in vivo. We developed an experimental design in which the OE of Rhinella arenarum tadpoles could be easily and selectively damaged by immersing the animals in ZnSO(4) solutions of various concentrations for differing time periods. Image analysis of histological sections showed that different combinations of each of these conditions produced statistically different degrees of injury to the olfactory tissue. We also observed that the morphology of the OE was restored within a few days of recovery after ZnSO(4) treatment. Immunohistochemical analysis of BDNF was performed with an antiserum whose specificity was confirmed by Western blotting, and which showed drastic changes in the abundance and distribution pattern of this neurotrophin in the damaged olfactory system. Our results thus suggest that BDNF is involved in the regeneration of the OE of amphibian larvae, and that our approach is suitable for further investigations of this topic.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-009-0752-7DOI Listing

Publication Analysis

Top Keywords

amphibian larvae
8
suitable model
8
model study
8
brain-derived neurotrophic
8
neurotrophic factor
8
factor bdnf
8
neuronal turnover
8
turnover olfactory
8
olfactory epithelium
8
olfactory system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!