Autoimmune-prone nonobese diabetic mice deficient for B7-2 spontaneously develop an autoimmune peripheral neuropathy mediated by inflammatory CD4(+) T cells that is reminiscent of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. To determine the etiology of this disease, CD4(+) T cell hybridomas were generated from inflamed tissue-derived CD4(+) T cells. A majority of T cell hybridomas were specific for myelin protein 0 (P0), which was the principal target of autoantibody responses targeting nerve proteins. To determine whether P0-specific T cell responses were sufficient to mediate disease, we generated a novel myelin P0-specific T cell receptor transgenic (POT) mouse. POT T cells were not tolerized or deleted during thymic development and proliferated in response to P0 in vitro. Importantly, when bred onto a recombination activating gene knockout background, POT mice developed a fulminant form of peripheral neuropathy that affected all mice by weaning age and led to their premature death by 3-5 wk of age. This abrupt disease was associated with the production of interferon gamma by P0-specific T cells and a lack of CD4(+) Foxp3(+) regulatory T cells. Collectively, our data suggest that myelin P0 is a major autoantigen in autoimmune peripheral neuropathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699118PMC
http://dx.doi.org/10.1084/jem.20082113DOI Listing

Publication Analysis

Top Keywords

peripheral neuropathy
16
p0-specific cell
12
autoimmune peripheral
12
novel myelin
8
myelin p0-specific
8
cell receptor
8
receptor transgenic
8
cd4+ cells
8
cell hybridomas
8
cell
5

Similar Publications

Cystic fibrosis (CF)-related central (CNS) and peripheral nervous system (PNS) disorders have not yet been fully described. We report the first case of post-infective neuromuscular hyperexcitability syndrome in a 23-year-old male patient with CF and pulmonary exacerbation. CNS radiological investigations were unremarkable and no autoantibodies were detected.

View Article and Find Full Text PDF

Purpose Pre-clinical studies have demonstrated direct influences of the autonomic nervous system (ANS) on the immune system. However, it remains unknown if connections between the peripheral ANS and immune system exist in humans and contribute to the development of chronic inflammatory disease. This study had three aims: 1.

View Article and Find Full Text PDF

Unlabelled: Although tryptophan (Trp) is the largest and most structurally complex amino acid, it is the least abundant in the proteome. Its distinct indole ring and high carbon content enable it to generate various biologically active metabolites such as serotonin, kynurenine (Kyn), and indole-3-pyruvate (I3P). Dysregulation of Trp metabolism has been implicated in diseases ranging from depression to cancer.

View Article and Find Full Text PDF

Introduction: Phosphoribosyl pyrophosphate synthetase 1 () is an X-linked gene critical for nucleotide metabolism. Pathogenic variants cause three overlapping phenotypes: Arts syndrome (severe neurological disease), Charcot-Marie-Tooth type 5 [CMTX5] (peripheral neuropathy), and non-syndromic sensorineural hearing loss (SNHL). Each may be associated with retinal dystrophy.

View Article and Find Full Text PDF

Alström syndrome: the journey to diagnosis.

Orphanet J Rare Dis

January 2025

Department of Diabetes, Endocrinology and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK.

Background: Alström syndrome (AS) is a recessively inherited genetic condition which is ultra-rare and extremely complex. Symptoms include retinal dystrophy, nystagmus, photophobia, hearing loss, obesity, insulin resistance, diabetes and cardiomyopathy. The condition is progressive, but it is important to note that not all the complications associated with AS occur in everyone affected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!