A full-length FBPase cDNA has been isolated from Fragaria x ananassa (strawberry) corresponding to a novel putative chloroplastic FBPase but lacking the regulatory redox domain, a characteristic of the plastidial isoenzyme (cpFBPaseI). Another outstanding feature of this novel isoform, called cpFBPaseII, is the absence of the canonical active site. Enzymatic assays with cpFBPaseII evidenced clear Mg(2+)-dependent FBPase activity and a K(m) for fructose-1,6-bisphosphate (FBP) of 1.3 mM. Immunolocalization experiments and chloroplast isolation confirmed that the new isoenzyme is located in the stroma. Nevertheless, unlike cpFBPaseI, which is redox activated, cpFBPaseII did not increase its activity in the presence of either DTT or thioredoxin f (TRX f) and is resistant to H(2)O(2) inactivation. Additionally, the novel isoform was able to complement the growth deficiency of the yeast FBP1 deletion fed with a non-fermentable carbon source. Furthermore, orthologues are restricted to land plants, suggesting that cpFBPaseII is a novel and an intriguing chloroplastic FBPase that emerged late in the evolution of photosynthetic organisms, possibly because of a pressing need of land plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2009.01960.xDOI Listing

Publication Analysis

Top Keywords

cpfbpaseii novel
8
chloroplastic fbpase
8
novel isoform
8
land plants
8
cpfbpaseii
5
novel redox-independent
4
redox-independent chloroplastic
4
chloroplastic isoform
4
isoform fructose-16-bisphosphatase
4
fructose-16-bisphosphatase full-length
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!