Visualization of flagellar interactions on bacterial carpets.

J Microsc

Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, USA.

Published: February 2009

Methods for the in-depth study of the physics of microscale actuation of microfluidics environments by flagellated bacteria 'teamsters' have been developed. These methods, which include single and multi-colour fluorescent labelling and electron microscopy allow for the analysis of the effect that individual flagellar filaments have on bacterially driven microstructures, and allow for the investigation of the interaction and coordination of flagellar filaments of neighbouring bacteria on densely packed monolayers of bacteria, 'bacterial carpets'. We show that the flagella of bacteria that are immobilized on a surface often interact with each other, and that the flagella of these bacteria do not often form multi-flagella bundles that are aligned with the cell body.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2818.2009.03119.xDOI Listing

Publication Analysis

Top Keywords

flagellar filaments
8
flagella bacteria
8
bacteria
5
visualization flagellar
4
flagellar interactions
4
interactions bacterial
4
bacterial carpets
4
carpets methods
4
methods in-depth
4
in-depth study
4

Similar Publications

is a Gram-negative bacterium and human pathogen that is linked to various gastric diseases, including peptic ulcer disease, chronic gastritis, and gastric cancer. The filament of the flagellum is surrounded by a membranous sheath that is contiguous with the outer membrane. Proteomic analysis of isolated sheathed flagella from B128 identified the lipoprotein HP0135 as a potential component of the flagellar sheath.

View Article and Find Full Text PDF

Flagella are essential for motility and pathogenicity in many bacteria. The main component of the flagellar filament, flagellin (FliC), often undergoes post-translational modifications, with glycosylation being a common occurrence. In PAO1, the b-type flagellin is -glycosylated with a structure that includes a deoxyhexose, a phospho-group, and a previous unknown moiety.

View Article and Find Full Text PDF

CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility.

Cell Mol Life Sci

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.

Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.

View Article and Find Full Text PDF

TCTEX1D2 is essential for sperm flagellum formation in mice.

Sci Rep

January 2025

Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.

Flagella and cilia are widely conserved motile structures, in mammalian, sperm possess flagella. Large protein complexes called dynein, including cytoplasmic dynein 2 and axonemal dynein, play a role in the formation of cilia and flagella. The function of each subunit component of dynein complexes in sperm flagellum formation remains unclear.

View Article and Find Full Text PDF

A Phage-Based Approach to Identify Antivirulence Inhibitors of Bacterial Type IV Pili.

Microb Biotechnol

January 2025

Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.

The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!