Brenneria salicis resides in symptomless willow (Salix spp.) and other tree species, but only willow trees develop watermark disease. To understand the conversion of B. salicis into a pathogen, its pathogenicity and differential growth in the various tree species are studied. Brenneria salicis was detected by plating and polymerase chain reaction-based techniques. Cell wall degradation and quorum sensing (QS) were assayed as possible pathogenicity mechanisms in wood. Differences in B. salicis growth capacities were tested in wood sap of the trees. Watermark diseased willow wood contained high concentrations of B. salicis with QS-induced cellulase activity. In the fall, wood sap of willow, and not of poplar and alder, promoted high density growth of B. salicis. In situ, B. salicis was the dominant bacterial type in willow wood during the fall and winter period. Willow sustains high densities of B. salicis at the time of leaf shedding. The cellulase in the immobilized wood sap has then a long-lasting contact with the xylem cell wall. Timing of dormancy and subsequent winter conditions might interfere with sap composition, B. salicis density, activity and survival, and be the reason, at least partly, for the variable occurrence of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2009.01874.xDOI Listing

Publication Analysis

Top Keywords

wood sap
16
willow wood
12
brenneria salicis
12
salicis
10
tree species
8
cell wall
8
willow
7
wood
6
sap
5
sap promotes
4

Similar Publications

Insights into the subdaily variations in methane, nitrous oxide and carbon dioxide fluxes from upland tropical tree stems.

New Phytol

January 2025

Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.

Recent studies have shown that stem fluxes, although highly variable among trees, can alter the strength of the methane (CH) sink or nitrous oxide (NO) source in some forests, but the patterns and magnitudes of these fluxes remain unclear. This study investigated the drivers of subdaily and seasonal variations in stem and soil CH, NO and carbon dioxide (CO) fluxes. CH, NO and CO fluxes were measured continuously for 19 months in individual stems of two tree species, Eperua falcata (Aubl.

View Article and Find Full Text PDF

Linking sap flow and tree water deficit in an unmanaged, mixed beech forest during the summer drought 2022.

Plant Biol (Stuttg)

December 2024

Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany.

Temperate mixed forests are currently experiencing severe drought conditions and face increased risk of degradation. However, it remains unclear how critical tree physiological functions such as sap flow density (SFD) and tree water deficit (TWD, defined as reversible stem shrinkage when water is depleted), respond to extreme environmental conditions and how they interact under dry conditions. We monitored SFD and TWD of three co-occurring European tree species (Fagus sylvatica, Fraxinus excelsior and Acer pseudoplatanus) in dry conditions, using high temporal resolution sap flow, dendrometer, and environmental measurements.

View Article and Find Full Text PDF

This study conducted a comparative analysis on the effects of smart automatic and semi-automatic irrigation methods on the physiological characteristics and growth of × Matsum. seedlings. The smart automatic irrigation system, which activates irrigation when the soil moisture drops below 15%, demonstrated superior characteristics in sap-wood area and bark ratio, as well as excellent water management efficiency, compared to the semi-automatic irrigation method, which involves watering (2.

View Article and Find Full Text PDF

Drought has been found to affect the size and color of precious heartwood of Dalbergia odorifera, but the mechanism remains unclear. For this purpose, we performed the measurement of heartwood size, color and flavonoid content and composition in a 15-year-old mixed plantation of D. odorifera and Santalum album that had been subjected to two levels of rainfall exclusion and control treatments for 7 years, and carbon isotope labeling and anatomical observation in 2-year-old potted D.

View Article and Find Full Text PDF

Conserved responses of water use to evaporative demand in mixed forest across seasons in low subtropical China.

Sci Total Environ

December 2024

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China.

The positive correlation between diversity and production has been extensively documented. Given the intrinsic relationship between production and plant water consumption, it was anticipated that mixed forests would exhibit different water use compared to pure forests. In this study, the responses of water use to vapour pressure deficit were analyzed by monitoring the sap flow of Schima superba in both pure and mixed forests, as well as Castanopsis chinensis in mixed forest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!