A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aluminum stimulates the proliferation and differentiation of osteoblasts in vitro by a mechanism that is different from fluoride. | LitMetric

Micromolar concentrations of aluminum sulfate consistently stimulated [3H]thymidine incorporation into DNA and increased cellular alkaline phosphatase activity (an osteoblastic differentiation marker) in osteoblast-line cells of chicken and human. The stimulations were highly reproducible, and were biphasic and dose-dependent with the maximal stimulatory dose varied from experiment to experiment. The mitogenic doses of aluminum ion also stimulated collagen synthesis in cultured human osteosarcoma TE-85 cells, suggesting that aluminum ion might stimulate bone formation in vitro. The effects of mitogenic doses of aluminum ion on basal osteocalcin secretion by normal human osteoblasts could not be determined since there was little, if any, basal secretion of osteocalcin by these cells. 1,25 Dihydroxyvitamin D3 significantly stimulated the secretion of osteocalcin and the specific activity of cellular alkaline phosphatase in the human osteoblasts. Although mitogenic concentrations of aluminum ion potentiated the 1,25 dihydroxyvitamin D3-dependent stimulation of osteocalcin secretion, they significantly inhibited the hormone-mediated activation of cellular alkaline phosphatase activity. Mitogenic concentrations of aluminum ion did not stimulate cAMP production in human osteosarcoma TE 85 cells, indicating that the mechanism of aluminum ion does not involve cAMP. The mitogenic activity of aluminum ion is different from that of fluoride because (a) unlike fluoride, its mitogenic activity was unaffected by culture medium changes; (b) unlike fluoride, its mitogenic activity was nonspecific for bone cells; and (c) aluminum ion interacted with fluoride on the stimulation of the proliferation of osteoblastic-line cells, and did not share the same rate-limiting step(s) as that of fluoride. PTH interacted with and potentiated the bone cell mitogenic activity of aluminum ion, and thereby is consistent with the possibility that the in vivo osteogenic actions of aluminum ion might depend on PTH. In summary, low concentrations of aluminum ion could act directly on osteoblasts to stimulate their proliferation and differentiation by a mechanism that is different from fluoride.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00227749DOI Listing

Publication Analysis

Top Keywords

aluminum ion
44
concentrations aluminum
16
mitogenic activity
16
aluminum
13
cellular alkaline
12
alkaline phosphatase
12
ion
11
proliferation differentiation
8
mechanism fluoride
8
phosphatase activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!