Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As the first step to understand the reaction mechanism and diastereoselectivity of sodium borohydride reduction of ketones, ab initio Car-Parrinello molecular dynamics simulation has been performed on a solution of NaBH4 in liquid methanol. According to pointwise thermodynamic integration involving constrained molecular dynamics simulations, it was strongly suggested that Na+ and BH4(-) are associated in the solvent forming contact ion pairs. Thus we propose a new transition state structure model that contains complexation of the carbonyl oxygen with sodium cation. Predicted diastereoselectivity of the reduction of some substituted cyclohexanones applying this novel transition state model is in good agreement with experimental data, showing its validity and effectiveness to investigate the diastereoselectivity of NaBH4 reduction of other ketones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp809966u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!