Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The fluorescence lifetime of the zero point vibrational level of the first excited electronic state of dibenzothiophene (DBT) has been determined to be 1.0 ns by analysis of its rotationally resolved S1 <-- S0 fluorescence excitation spectrum. The S1 lifetime of DBT is substantially shorter than those observed for fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF), analogs of DBT in which the heavy sulfur atom is replaced by lighter ones. The electronic origin bands through the series CAR, FLU, DBF, and DBT exhibit a monotonic increase in Lorentzian broadening in their Voigt line shape profiles. Two other heterocyclic molecules manifest similar photophysical properties; 2,5-diphenylfuran and 2,5-diphenyl-1,3,4-oxadiazole. Lorentzian line shape broadenings of approximately 76 MHz were observed in the high-resolution spectra of their origin bands. Possible reasons for the short fluorescence lifetimes of these heterocycles are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp807397t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!