The early stages of carbon nanotube nucleation are investigated using field ion/electron microscopy along with in situ local chemical probing of a single nanosized nickel crystal. To go beyond experiments, tight-binding Monte Carlo simulations are performed on oriented Ni slabs. Real-time field electron imaging demonstrates a carbon-induced increase of the number density of steps in the truncated vertices of a polyhedral Ni nanoparticle. The necessary diffusion and step-site trapping of adsorbed carbon atoms are observed in the simulations and precede the nucleation of graphene-based sheets in these steps. Chemical probing of selected nanofacets of the Ni crystal reveals the occurrence of Cn (n=1-4) surface species. Kinetic studies prove C2+ species are formed from C1 with a delay time of several milliseconds at 623 K. Carbon dimers, C2, must not necessarily be formed on the Ni surface. Tight-binding Monte Carlo simulations reveal the high stability of such dimers in the first layer beneath the surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn800769w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!