Conformational change is regulating the biological activity of a large number of proteins and enzymes. Efforts in structural biology have provided molecular descriptions of the interactions that stabilize the stable ground states on the reaction trajectories during conformational change. Less is known about equilibrium thermodynamic stabilities of the polypeptide segments that participate in structural changes and whether the stabilities are relevant for the reaction pathway. Adenylate kinase (Adk) is composed of three subdomains: CORE, ATPlid, and AMPbd. ATPlid and AMPbd are flexible nucleotide binding subdomains where large-scale conformational changes are directly coupled to catalytic activity. In this report, the equilibrium thermodynamic stabilities of Adk from both mesophilic and hyperthermophilic bacteria were investigated using solution state NMR spectroscopy together with protein engineering experiments. Equilibrium hydrogen to deuterium exchange experiments indicate that the flexible subdomains are of significantly lower thermodynamic stability compared to the CORE subdomain. Using site-directed mutagenesis, parts of ATPlid and AMPbd could be selectively unfolded as a result of perturbation of hydrophobic clusters located in these respective subdomains. Analysis of the perturbed Adk variants using NMR spin relaxation and C(alpha) chemical shifts shows that the CORE subdomain can fold independently of ATPlid and AMPbd; consequently, folding of the two flexible subdomains occurs independently of each other. Based on the experimental results it is apparent that the flexible subdomains fold into their native structure in a noncooperative manner with respect to the CORE subdomain. These results are discussed in light of the catalytically relevant conformational change of ATPlid and AMPbd.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi8018042DOI Listing

Publication Analysis

Top Keywords

atplid ampbd
20
conformational change
12
flexible subdomains
12
core subdomain
12
adenylate kinase
8
equilibrium thermodynamic
8
thermodynamic stabilities
8
subdomains
7
atplid
5
ampbd
5

Similar Publications

Conformational change is regulating the biological activity of a large number of proteins and enzymes. Efforts in structural biology have provided molecular descriptions of the interactions that stabilize the stable ground states on the reaction trajectories during conformational change. Less is known about equilibrium thermodynamic stabilities of the polypeptide segments that participate in structural changes and whether the stabilities are relevant for the reaction pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!