Cone photoreceptors distinguish small changes in light intensity while operating over a wide dynamic range. The cone synapse encodes intensity by modulating tonic neurotransmitter release, but precise encoding is limited by the quantal nature of synaptic vesicle exocytosis. Cones possess synaptic ribbons, structures that are thought to accelerate the delivery of vesicles for tonic release. Here we show that the synaptic ribbon actually constrains vesicle delivery, resulting in a maintained state of synaptic depression in darkness. Electron microscopy of cones from the lizard Anolis segrei revealed that depression is caused by the depletion of vesicles on the ribbon, indicating that resupply, not fusion, is the rate-limiting step that controls release. Responses from postsynaptic retinal neurons from the salamander Ambystoma tigrinum showed that the ribbon behaves like a capacitor, charging with vesicles in light and discharging in a phasic burst at light offset. Phasic release extends the operating range of the cone synapse to more accurately encode changes in light intensity, accentuating features that are salient to photopic vision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760096PMC
http://dx.doi.org/10.1038/nn.2267DOI Listing

Publication Analysis

Top Keywords

synaptic ribbon
8
changes light
8
light intensity
8
range cone
8
cone synapse
8
light
5
role synaptic
4
ribbon
4
ribbon transmitting
4
cone
4

Similar Publications

Noise-induced hearing loss is one of the most common forms of hearing loss in adults and also one of the most common occupational diseases. Extensive previous work has shown that the highly sensitive synapses of the inner hair cells (IHCs) may be the first target for irreparable damage and permanent loss in the noise-exposed cochlea, more precisely in the cochlear base. However, how such synaptic loss affects the synaptic physiology of the IHCs in this particularly vulnerable part of the cochlea has not yet been investigated.

View Article and Find Full Text PDF

To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.

View Article and Find Full Text PDF

Repeated low-intensity noise exposure exacerbates age-related hearing loss via RAGE signaling pathway.

Neurobiol Dis

January 2025

Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China. Electronic address:

Repeated low-intensity noise exposure is prevalent in industrialized societies. It has long been considered risk-free until recent evidence suggests that the temporary threshold shift (TTS) induced by such exposure might be a high-risk factor for hearing loss. This study was conducted to further investigate the manner in which repeated low-intensity noise exposure contributed to hearing damage.

View Article and Find Full Text PDF

Neural and behavioral binaural hearing impairment and its recovery following moderate noise exposure.

Hear Res

December 2024

Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address:

Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of "hidden hearing loss" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate.

View Article and Find Full Text PDF

Synaptic ribbons, recognized for their pivotal role in conveying sensory signals in the visual pathway, are intricate assemblages of presynaptic proteins. Complexin (CPX) regulates synaptic vesicle fusion and neurotransmitter release by modulating the assembly of the soluble NSF attachment protein receptor (SNARE) complex, ensuring precise signal transmission in the retina and the broader central nervous system (CNS). While CPX1 or CPX2 isoforms (CPX1/2) play crucial roles in classical CNS synapses, CPX3 or CPX4 isoforms (CPX3/4) specifically regulate retinal ribbon synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!