We examined the effects of 48 h bilateral nephrectomy on plasma and cardiac tissue expression of angiotensin-(1-12) [ANG-(1-12)], ANG I, and ANG II in adult Wistar-Kyoto rats to evaluate functional changes induced by removing renal renin. The goal was to expand the evidence of ANG-(1-12) being an alternate renin-independent, angiotensin-forming substrate. Nephrectomy yielded divergent effects on circulating and cardiac angiotensins. Significant decreases in plasma ANG-(1-12), ANG I, and ANG II levels postnephrectomy accompanied increases in cardiac ANG-(1-12), ANG I, and ANG II concentrations compared with controls. Plasma ANG-(1-12) decreased 34% following nephrectomy, which accompanied 78 and 66% decreases in plasma ANG I and ANG II, respectively (P < 0.05 vs. controls). Contrastingly, cardiac ANG-(1-12) in anephric rats averaged 276 +/- 24 fmol/mg compared with 144 +/- 20 fmol/mg in controls (P < 0.005). Cardiac ANG I and ANG II values were 300 +/- 15 and 62 +/- 7 fmol/mg, respectively, in anephric rats compared with 172 +/- 8 fmol/mg for ANG I and 42 +/- 4 fmol/mg for ANG II in controls (P < 0.001). Quantitative immunofluorescence revealed significant increases in average grayscale density for cardiac tissue angiotensinogen, ANG I, ANG II, and AT(1) receptors of WKY rats postnephrectomy. Faint staining of cardiac renin, unchanged by nephrectomy, was associated with an 80% decrease in cardiac renin mRNA. These changes were accompanied by significant increases in p47(phox), Rac1, and Nox4 isoform expression. In conclusion, ANG-(1-12) may be a functional precursor for angiotensin peptide formation in the absence of circulating renin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670698 | PMC |
http://dx.doi.org/10.1152/ajpheart.01114.2008 | DOI Listing |
Genes Genomics
January 2025
Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea.
Background: This study explores the cross-fertilization of transgenic tobacco plants to produce dual-specific monoclonal antibodies (mAbs) targeting Ebola virus-like particles and HER2 proteins. We generated F plants by hybridizing individual transgenic lines expressing the anti-HER2 breast cancer VHH mAb (HV) and the H-13F6 human anti-Ebola large single chain mAb (EL).
Objective: Hybridizing transgenic plants to express dual-antibodies between different structures VHH and LSCK indicate the potential of transgenic plants as a cost-effective and scalable production system for dual targeting mAbs.
Mol Cell Endocrinol
January 2025
Department of Bone injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China. Electronic address:
Chemerin, an adipocyte-secreted adipokine, can regulate bone resorption and bone formation and is a promising therapy for postmenopausal osteoporosis. However, the effect of endogenous chemerin on intraosseous vascular remodeling in postmenopausal osteoporosis remains unclear. In this study, we investigated the effect of chemerin on osteogenesis formation and intraosseous vascular remodeling in ovariectomized Rarres2 knockout (Rarres2) mice.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea. Electronic address:
Semaglutide and liraglutide are long-acting glucagon-like peptide-1 receptor agonists used to treat type-2 diabetes and obesity. Recent advances in peptide synthesis and analytical technologies have enabled the development of synthetic generic peptide for reference listed drugs (RLD) originating from recombinant DNA (rDNA) technology. Since the original semaglutide and liraglutide were produced through rDNA technology, there has been great interest in developing their synthetic peptides as generic versions of the original drugs.
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
January 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; email:
Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding , a human coronary artery disease risk locus.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.
Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!